REPORT DOCUMENTATION PAGE :

AFRL-SR-AR-TR-04

The public reporting burden for this collection of information is estimated to average 1 hour per res < ng data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. LA f this collection of
information, including suggestions for reducing the burden, to the Department of Defense, Executive : . should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing DM - rrently valid OMB
control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. o - i
1. REPORT DATE (DD-MM-YYYY} | 2. REPORT TYPE) 3. DATES COVERED (From - To)

15-05-2004 ,: MTechnical Report 15 AUG 2003 - 15 MAY 2004
4. TITLE AND SUBTITLE : 5a. CONTRACT NUMBER
Adaptive Artificial Intelligence for Next Generation Conflict F49620-03-C-0062

5b. GRANT NUMBER

5¢. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
John Tiller

John Rushing
Drew McDowell
Steve Tanner

be. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

142 Sarah Hughes Dr

Madison, AL 35758

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Air Force Office of Scientific Research AFOSR

4015 Wilson Boulevard Room 713

Arlington, VA 22203) 11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Report developed under STTR contract for topic "Adaptive Artificial Intelligence for Next Generation Conflict". This project
addresses an architecture and development approach for Artificial Intelligence in computer wargames. The results of this project
were used in three technology test-bed applications having to do with modem air power, squad-level ground combat, and
grand-operational warfare. The Al architecture was designed so that potential Al technologies can be utilized in this architecture in
a "plug-and-play" manner. Under this architecture, new Al developments will be easy to incorporate into the Al engine. This will
enable the resulting computer wargames to remain current and competitive in the future.

15. SUBJECT TERMS)
STTR Report, Artificial Intelligence, Wargame ‘

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF _|18. NUMBER |19a. NAME OF RESPONSIBLE PERSON

a. REPORT |b. ABSTRACT | c. THIS PAGE ABSTRACT SII:GES John Tiller
None ane None Uuu 19b. TELEPHONE NUMBER (/nc/ude area code)
72 256-461-8652

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. 239.18

- Phase I Final Report
Submitted by: John Tiller
tiller@hiwaay.net
256-461-8652
For: STTR AF03T022
Adaptive Artificial Intelligence for Next-Generation Conflict
Approved for public release; distribution unlimited.

Table of Contents
L. IOETOAUCHIONovvevevenrerereeeetenreresseeeaeeesesseseaseresaensesesenssststsesronsasessassuessssesassssnsbesssesnanassssasassansssasserassssenasses 1
2. TECHNICAL RESUIES......cveveeeeverecreiirrereresienierssesessesesecseseestsasserestssessasasasssasssssersebsnsesssaenessasassassesesssssnssnsesssossnes 2
3. Conferences and PreSentationscco.evveeeerereesensiresesionininiisisisesnsnsstssssesssisssesssesssssssssssessssssasasseessasas 3
4. SUINIMATY ...oceoverueereenrerececstresisisisssssstessssssbassasesssssssasasesabesassasassssssses st sasestsesesronsenearasesrstssthsssssssssssnsesssssssass 4
5. REPOTLS curveeeueueenreeneesaesetiettsasas ettt sbe e sas e e s bbb sheba st st s s bR RS d S BB b e E LA S LB b LSt SR s E e b e bR s e n R 4
5.1 Wargaming fOr BIUE VICLOIYoccovuriiriiiiiiiminiiiisenensssise s sessssssnsssssssessesssssessssesessssssessasssissssesnass 4
5.2 The Determination and Application of a Concept of Frontline in Ground-Based Operational-Level
WATZAINES ...c.cueeerererececcsesstssssestassstssssssensssssssssesesatesesasetessssasasss st ssassssssessssasssssssssstossssssssossstasmsssismsesststsissasas 8
5.3 Code Structure for the Implementation of Al Programming in the Model-View-Controller Design
PAIBITL. ...ocuvieeeererteceeereresseetessesseeseessessasst soressnsssesstesesstorssstsssasstasnssstssssssnssssssesensnnsssenstassssssesseessansnisstoses 12
5.4 A Parameterized Minpath Algorithm with Applications to Computer Wargamesc.ocoeecunrennnene 15
5.5 Bayes Belief Networks — Initial INVeStigation..........cuvveeeirmiirnniinniiennnensenenescnei 17
5.6 Embedding Al Technologies in General AppliCationscoueervenrsissiniorsescnnnenscssssmesiinisnnes 25
5.7 Applications of Expert Systems to Computer Wargame AT Enginesc.coccvuverseecrcencrsinscnscnscisinne 27
5.8 Al Agents within an HLA Federationcccovevirvereimrnecinmneiinnninennensssineses s 30
5.9 Implementing National Characteristics in Wargame AlL........ccooiiiiinnninne. 34
5.10 The Technical Implementation of Plug-and-Play Al in a Computer Wargame.......coovvuvrmrcrenrinnenns 36
5.11 DBSCAN for Determination of Front Lines.........ccovimnneniivinniininienmsmenisessseessis 38
5.12 Graphical AT TEChNOIOZIEScevireririrrusiinerresciessscsrnssssssienssesiss st sesesssesesiststsnsasasnsssnsssansasassssass 45
5.13 An Architecture for the Development of AT AVatars.........ccoviiinininninieninieninineeee. 46
5.14 Continuous Path AIZOTItHIMScccccveeivniiiininininiinininri st sssssnsteeessesssesestsssesesssssssasas 50
5.15 Learning to Learn - Data Mining Applications for Wargames............ccceveussensrerserescncisnininsisincnes 56
5.16 The Use of Al Technologies in Wargame Development...........ocvuveueimirennininisisiennnnsssiosseennesesesens 62
5.17 BIDHOZIAPNY ..ecerueveerieirtcrrctsesseseninaiisn et sssesstssssssssssssssssssssasssssssssssasssasssssssssssssssasssasanssssnss 70

1. Introduction

This final reporf covers the work by John Tiller and the University of Huntsville-
Alabama for the Phase I effort under the Air Force Office of Scientific Research funded
STTR AF03T022 for the period August 15, 2003 through May 15, 2004.

The research conducted under this effort was based on two primary directions: the
development of technology test-bed applications that would serve as development
platforms in a subsequent Phase II and the investigation into Al technologies that would
be used in Al development in Phase II.

For this purpose, three technology test-bed applications were eventually used:
e Modern Air Power — a real-time simulation of theater-level air power.
e Total War in Europe — a grand-operational simulation of World War II in Europe.

e Squad Battles — a turn-based tactical ground combat simulation.
In each case, preliminary AI development was conducted to serve as a basis for
subsequent development in Phase II. In the case of Modern Air Power, this was

sufficient to bring the first commercialization War Over Vietnam to completion for
release by mid-May 2004.

2. Technical Results

The research and development pursued under this effort followed the approach first
described in the Phase I proposal. This approach structures the Al according to a three
phase system of Assessment, Planning, and Execution. Figure 1 below shows how this
approach is structured relative to the game engine and the AT technologies.

t — Intcrface — , Sm— Interfacc —

| Al Technology I I Al Technology | | Al Technology I

Figure 1. A/I System Architecture

These three phases of the Al engine are described below:

1. Assessment — Determine the key issues with respect to the current situation.
Incorporate this with previous information so as to be able to identify trends.

2. Planning — Attempt to predict enemy Course of Action. At the same time,
conduct planning as to friendly Course of Action. Both of these rely on
assessment information gathered in the first step.

3. Execution — Execute the plans developed in the previous step. Determine
optimal implementations of these plans using assessment information.

This structure allows development of the AI technologies to proceed independently of the
game engine development and allows for flexibility in the application of new Al
technologies into the game system. Based on this approach, it was decided that the
research institute, the University of Alabama-Huntsville, would take responsibility for
development of an Al library based on several different AI technologies while the
principle developer, John Tiller, would proceed with development of the game engines.
The architecture described here then allows the linkage of those game engines with the
resulting Al library in subsequent Phase II development.

The Al technologies investigated during this Phase I effort include the following:

o Expert Systems — rule-based systems capable of performing logical reasoning.
o Neural Networks — general input/output functions particularly suitable for non-
linear systems.
¢ Genetic Algorithms — optimization techniques that are robust in non-linear
situations.
Cluster Analysis — useful for extracting data from complex systems.
Data Mining — potentially useful in education situations for extracting
performance data. '

Similar to this AI approach, it was also decided that development of Cascading Effects
could proceed in a similar manner. That is, it was decided that the research institute
would proceed with the development of a general Cascading Effects engine and at a
suitable point in its development, the principle developer would link the game engines to
that code. '

Much of the technical research conducted in this Phase I effort is described in more detail
in the Reports section of this document.

3. Conferences and Presentations

The following two subsections list the conferences and presentations made during this
STTR and also planned conferences under the Phase II effort to be subsequently
performed.

Actual
e JT: Two presentations on Computer Wargames at 2003 Connections, plus
Modern Air Power demo, Rome AFRL, July 15-18th, 2003.
e JT: Presented Modern Air Power demo at Maxwell AFB, September 26th,
2003. , £,

Planned

JT: Attended DARWARS demo at DARPA and presented Modern Air Power
demo, October 16th, 2003.

JT: Met with Stottler-Henke developer Dan Fu, October 22nd, 2003.

JT: Attended Training Games Symposium, DC, November 5-6th, 2003.

JT: Presented seminar “Implementing Al Technologies in Computer
Wargames”, University of Louisville, and met with Intellas developers,
November 7th, 2003. ,

JT: Attended /ITSEC convention, Orlando, FL, Dec 1-4, 2003.

JT: Modemn Air Power research and design at Maxwell AFB, Jan 22-23, 2004.
JT: Attended JFAC exercise at Maxwell AFB, Feb 17-18, 2004.

JT: Attended AF M&S conference, Orlando, FL, Feb 24-26, 2004 and served
on AF wargaming panel. Appreciation letter from Col. Votipka.

JT: Presented at the “Defense & Security Symposium”, April 12-16, 2004,
Orlando, Florida.

JT: Presented at the AMC Technology Days Symposium, May 5-6, 2004,
Scott AFB, Illinois.

JT: Attend AETC Conference and present, May 25-27, 2004.
JT/UAH: Attend AI Conference, San Jose, July, 2004.
JT/UAH: Attend Connections Conference, USAFA, August, 2004.

4. Summary

The Phase I effort of this STTR has brought 3 wargames forward in their development
that will be useful to the Air Force for education, training, and simulation. The Modern
Air Power game series has started commercialization and there are an additional 3 or
more games planned in this series, plus the military professional version. The Squad
Battles game series will be further developed to address current and future weapons and
technologies associated with Air Force Security Force situations. And finally, the Total
War series will be developed to completion so that it can be used to look at strategic
issues with cascading effects in both historical and modern conflict.

5. Reports

The following sections describe in more detail development that was accomplished in the
Phase I effort of this proposal.

5.1 Wargaming for Blue Victory

Matthew Caffrey, Col, USAFR
John Tiller, Ph. D., Commercial Wargame Developer

Introduction

It was after the attack on Pearl Harbor during World War II and the Japanese were
making preparations for their next big campaign, that of the naval attack on the
American-held Midway Island. In preparation for this as was their custom, a wargame
was held to rehearse the attack, just as had been done earlier for the attack on Pearl
Harbor. But things were not going well for the Japanese side in this wargame. During
the game, American planes sank two Japanese carriers. Rear Admiral Ukagi Matome,
commander for the Japanese force for the future operation unilaterally reversed the
judgment of the umpires and restored the carriers to the game. Restarting the game, the
Japanese went on to capture Midway Island. However, two weeks later in the actual
operation, American planes did sink two Japanese carriers, and then two more.
Unfortunately for the Japanese, Admiral Matome could not reach into the “dead pile” and
replace his ships.

This paper presents a concept called “Wargaming for Blue Victory” and discusses the
issues associated with this. The Japanese conduct of their Midway wargame is a very
good example of both the concept and its potential consequences. The conclusion of this
paper is that to avoid situations such as these in future military conflicts, a strong
computer opponent with capable, challenging Artificial Intelligence (AI) is needed.

Background

Until recently, wargaming was based entirely on human adjudicated games. That is,
given two sides Red and Blue engaged in a wargame scenario, both sides were required
to be played by human opponents and the resolution of the wargame rules, or -
adjudication, was also required to be managed by a human judge. Before the introduction
of computers, this was the only approach available. As with any endeavor involving
human participants, there is the danger that subjective human judgment may have an
adverse effect on the course of the activity.

In the early 1800’s, as wargaming, or “Kriegspiel”, was coming of age in Prussia,
General Moltke would conduct exercises with the Prussian War College at one of the
actual invasion corridors into Prussia. Perhaps realizing how human factors can
adversely influence judgment, Moltke would begin by turning to the most junior student
present and ask for his plan of battle. Next he would ask the same question of the second
most junior student, and so on up the seniority chain. In doing so, he effectively
neutralized the very real tendency of any junior officer being placed in a situation of
having to contradict his senior. :

Moltke certainly recognized the problem called today “command influence”. In any
military situation, the judgment of more senior officers is going to overrule, either overtly
or covertly, the otherwise natural decisions of the junior officers. In wargaming
exercises, this can have an adverse effect on the objective outcome of the game. For
example, in the late 1800’s, Kaiser Wilhelm II, a self-considered military expert, would
also conduct staff rides to the invasion corridors. However, upon arriving, the Kaiser
would immediately announce to all present what he considered to be the “perfect” battle
plan. Not surprisingly, when the wargame was carried out, the Kaiser’s side always won
and the Kaiser’s preconceived notion vindicated. In the Great War to follow, this

weakness in Germany military planning would have a disastrous effect in the invasion of
France.

Concept
In this paper, the concept of “Wargaming for Blue Victory” has this definition:

Wargaming for Blue Victory means a situation, process, or effort, either
deliberate or inadvertent, causing the outcome of affected wargame scenarios to
be biased towards friendly victory.

Wargaming for Blue Victory skews the otherwise meaningful results of wargames so that
the participants or reviewers of the outcome end up with a false impression of the relative
difficulty of a particular situation or more importantly, are often unprepared for serious
issues and consequences associated with the actual situation.

Causes

There are several reasons why Wargaming for Blue Victory can occur in wargaming.
The historical situation caused by the Kaiser in Germany’s wargames in the late 1800’s,
is one good example of how command influence can result in this effect. The comments
by the Kaiser prior to the conduct of the wargame established a predisposition towards
the eventual outcome that was impossible to overcome.

The construction of the wargame rules can also result in a bias towards Blue victory.
During World War II, the US Army held wargames based on new equipment and
technology, much of which was unfamiliar and untested in battle. The head of the tank-
destroyer program provided the adjudication guide for the effectiveness of the tank
destroyers in the wargame. Later events would show that these guides overstated the
lethality of tank-destroyers. In early battles, tank destroyers were used far too
aggressively and with tragic results. '

In these same American wargames, efforts were made before play began to guarantee that
the outcome would provide the ground officers’ position on the employment of airpower.
It was until later after disasters like the Battle at Kasserine Pass that procedures were
changed.

In the traditional conduct of wargames with human players for both sides, it is possible
for the allocation of participants to be biased towards Blue. In the German wargames, the
most senior officers were given the privilege of serving with the Kaiser on the German
side while the junior officers were given the task of performing the function of the
opposing side. This imbalance in skill and experience certainly helped contribute to the
one-sided outcomes.

And certainly in this situation, it would be human nature for the players of the opposing
side to avoid taking actions which would embarrass the friendly side or show some
weakness in the friendly side. Regardless of rank, if the Red side is being played by Blue
officers, they can, if only covertly, have a bias towards Blue victory.

Finally, as the Japanese wargame of Midway Island shows, whenever the participants
have the option of overriding the results of the wargame as it progresses, then there is the
very real possibility that all objectivity is being lost in the outcome of the wargame and
that the result can totally misrepresent the actual scenario.

Prevention

The prevention of Wargaming for Blue Victory can occur through the use of computer-
based, rather than human-based, wargames, with the objective application of analytical

rules, and the introduction of a competent and challenging Artificial Intelligence feature
for the conduct of the opposing side.

While it is not impossible that the programming of a computer wargame can introduce a
bias towards friendly victory, the process of computer coding requires that the rules be
formalized and implemented in a strict computer language. Such an approach results in
source code that can be examined by others and any bias introduced into the coding can
be identified. Likewise, the execution of these rules is then performed objectively by the
computer hardware and this prevents any human subjective resolution, however slight or
inadvertent.

And while it is not impossible that the players in a computer wargame stop the wargame
and restart it to avoid adverse outcomes, it becomes a very explicit act in the conduct of
the wargame rather that what could be considered the honest correction of a mistake in
adjudication.

The introduction of Artificial Intelligence for the Red player in wargames removes any
potential for command influence in the execution of the game. Likewise, an Al player
has no problem with embarrassing the Blue player or demonstrating the fallacy of the
Blue course of action. And an Al player is not at risk of destroying their career by doing
SO.

Benefits

The approach of basing the conduct of wargames on computer implementations with
competent Al opponents has several benefits. The first of which is the mitigation, if not
elimination, of the Wargame for Blue Victory syndrome. In addition, with an Al
opponent, it is then possible to introduce programming which implements national
characteristics. When this is done, the Blue player no longer can count on seeing typical
Blue responses from the Red opponent during the game, but must plan and react more
according to the natural national characteristics of a real Red opponent.

There are significant cost benefits to using computer-based wargaming with Al
opponents as well. Typical live wargame exercises can involve hundreds of military
personnel incurring significant costs for the duration of the exercise. The present day
cost of computer equipment is so small in comparison that a huge increase in the number
of wargame experiences and their frequency is possible.

Finally, the resulting wargame is of high value as well because the automation of the
adjudication and the Red decision process then results in wargames with a much tighter
so-called OODA loop. That is, the resulting loop of Colonel Boyd of “Observe, Orient,
Decide, and Act” is operating at a much faster rate for such a wargame, resulting in
meaningful results in a much shorter time. This can be invaluable when in a situation
requiring the fast turnaround of course of action evaluation.

“A good plan today, viperously implemented, is better then a perfect plan tomorrow.”
General George S. Patton Jr.

Conclusion

Using computer wargames with challenging Artificial Intelligence, we are much less
likely to have wargame results skewed towards Blue victory and thus we will benefit far
more from these results than we would otherwise do with human-based adjudication and
human opponents. It is in our best interests to have the best anticipation of future conflict
and the ability to evaluate and make decisions faster than we have done in the past.

“This is not the enemy we wargamed against.”
Lt Gen William Scott Wallis
CG V Corps, Operation Iraqi Freedom

5.2 The Determination and Application of a Concept of Frontline in Ground-
Based Operational-Level Wargames

John Tiller

1.0 Introduction

This report addresses the concept of frontline in ground-based operational-level
wargames. The scale of operational-level is defined as wargame situations where there is
no significant ranged—ﬁre and thus the influence of any particular ground unit consists of
the area that it occupies but not to any far ranging distance from that area. It would be
possible to introduce ranged-fire into the algorithms through enhancement and extend the
notion of frontline given here to more tactical wargames, but this report will focus on
operational-level and strategic-level wargames.

The resulting concept of frontline will then be applied to a significant example of a
ground-based operational-level wargame. This wargame is the World War II in Europe
wargame series developed by John Tiller for HPS Simulations. This series has 5
potential releases beginning with The First Blitzkrieg covering the initial campaigns of
the Second World War in Europe such as Poland, France (1940), and Norway.

2.0 Definition
The concept of “frontline” is intended to provide useful information to AI (Artificial
Intelligence) algorithms in computer wargames. To begin with, a definition of frontline

needs to be established before algorithms that generate this result can be developed. In
this report then, the concept has this definition:

With respect to a given side in a wargame scenario, the frontline of that side is defined to
be the boundary of the area of influence for that particular side.

Tt should also be noted that once the frontline boundary is determined, this is then the
starting point for subsequent Al algorithms based on that frontline. For example, it can
then be determined which locations on the frontline are secure and which are in danger.
Or correspondingly, it can be determined which locations on the frontline have potential
for friendly exploitation. If an objective has been defined as a potential future frontline
for a given side, then that can be used to determine if the objective has been reached or
what locations have not been attained by the friendly side.

Also notice that the concept of frontline is not symmetric. That is, the frontline for one
particular side can be different from, but not overlapping with, the frontline of the other
side. In a sense, the intervening area between the frontlines is a type of no-man’s land -
with respect to a particular situation, or perhaps more appropriately for operational-level
situations, an area of disputed influence.

3.0 Development

To develop algorithms that result in the determination of frontline, there needs to be a
determination of what constitutes influence in a particular situation. To start with, each
friendly unit exerts influence in the location it occupies. Given our definition of
operational-level scale, this natural influence extends no further. Any extension of the
area of influence for the friendly side will then depend on the existence and location of
enemy units.

3.1 Danger Metric

The first step then towards the establishment of area of influence is to determine not only
where enemy units exist, but also the extent of their threat to a given location on the
wargame map. To determine this, we introduce the notion of a danger metric. This has
the following definition. '

The danger value of any particular location is a value related to the ability of enemy
units to occupy that location.

For example, for locations now occupied by enemy units, the danger value is highest.
For locations further away from enemy units, the danger value decreases. It is the
comparison between two given danger values that is of primary use to us rather than the
specific danger value.

An algorithm to generate danger values is easy to construct by first assigning enemy
locations a high danger value, and then in successive passes, assign lower danger values
to adjacent locations until all locations have been considered.

3.2 Area of Influence

Using the location of friendly units and the danger values determined, it is then possible
to define an area of influence for a given side. Note that this definition is not objectively
determined as it depends on the decision of whether locations at a distance from friendly
units are still under the influence of friendly units.

To begin with, all locations occupied by friendly units are considered under the influence
of friendly units. We will assign these locations a working value of the danger to use in
the algorithm.

Next, for each location that has been assigned a working value, we take that value and
increase it by a certain amount. The amount of this increase determines the sensitivity of
the algorithm to the presence of enemy units. For each adjacent location that has not
been assigned a value, if the modified value is greater than or equal to the danger value at
that location, we assign that location a working value equal to the modified value.

The algorithm continues until all locations have been considered. At this point, the area
of influence is defined to be all locations that have been assigned a working value by the
algorithm. From this, we determine the frontline to be the boundary of the area of
influence.

4.0 Results :

Below are snapshots showing the area of influence determined by this algorithm in the
computer wargame The First Blitzkrieg, currently under development by John Tiller for
HPS Simulations:

German Frontline: Note that depending on how close the enemy units are, the algorithm
does not extend the area of influence between friendly units.

10

Polish Frontline: Notice that the algorithm identifies significant areas of the Polish
frontier as failing to be under Polish influence.

Danish Frontline: This is after the first German turn and as a result of the German
invasion, large portions of Denmark are identified as no longer being under Danish
influence.

Allied Frontline: This is on the first turn and several issues with respect to the area of
influence of the Allied side have already been identified by the algorithm.

11

5.3 Code Structure for the Implementation of Al Programming
in the Model-View-Controller Design Pattern

John Tiller

1.0 Introduction

This report discusses an approach to code structure in computer wargames that supports a
complete implementation of the Evaluate-Plan-Execute (EPE) Al logic loop within the
context of a Model-View-Controller design pattern. This approach then allows for a
completely flexible implementation of the EPE loop, implementation of flexible plug-
and-play Al technologies, portability to other wargame implementations, and flexibility
in the EPE loop implementation.

2.0 The Model-View-Controller Design Pattern

The Model-View-Controller (MVC) design pattern is an approach to structuring the code
of an application into three distinct parts each with its own unique responsibilities. In this
approach, the Model component of the application is responsible for the low-level engine
calculations associated with the application. That is, the Model component is designed to
be an abstract implementation of the primary functions of the application and should be
completely free of any references to user interface or graphlcs The View component of
the application encapsulates all of the graphical processing of the application and all
functions associated with the graphical representation of application functions. Finally,
the Controller component of the application contains all user-interface functions such as
processing button clicks, dialog processing, and other actions initiated by the user
through the interface.

The call structure within the MVC design pattern is significant. The Model component
only makes calls to itself and never directly calls the View or Controller components. In
this way, it is programmed independent of any particular graphical or user interface
implementation. The View component can make direct calls to the Model, but only for

12

the purpose of obtaining information, but not to make any changes to the Model. The
View is thus programmed simply as a means of representing the Model data and not as a
means of modifying or updating that data. Finally, the Controller makes calls to both the
Model and View components. In both cases, it has the ability to make changes to either
component. Typically, as a result of user interaction, the Controller calls the Model to
cause some change in the state of the data and then calls the View component to cause
any representation of that data to be updated.

3.0 The Evaluate-Plan-Execute AI Processing Loop
The Evaluate-Plan-Execute (EPE) Al loop is based on a three-stage approach to Al
processing:

1. Evaluate — Evaluate the current situation.

2. Plan — Generate plans on how to handle the current situation.

3. Execute — Execute those plans.

The desirable approach is to encapsulate that processing into a single component so that
the maximum flexibility is achieved in the implementation. As such, the EPE Al loop
represents a portion of Model processing in the MVC design pattern. It has access to
other Model data and can modify that data, but relies on the other components of the
MVC design pattern for representation of those changes.

4.0 The Integration of the EPE Loop within the MVC Pattern

As previously stated, the EPE Al loop should be viewed as a portion of the Model
component. In this approach, the Controller component is then responsible for invoking
the EPE loop as needed, either directly or indirectly through other calls to the Model, so
that Al processing is performed. However, in this approach, there is a lack of visibility
into Al processing as a single call to the EPE loop would result in the entire Al
processing of the loop being performed without any intermediate visualization of the
results. An additional feature, that of callbacks, needs to be added to this approach to
achieve this visualization.

4.1 Callbacks

A callback allows an entity to trigger abstract events without having to know the recipient
of the trigger. This notion is completely similar to the notion in computer hardware of
interrupt. A hardware interrupt is generated by computer hardware and this interrupt is
then processed by driver or operating system software. This approach to hardware and
software design then allows hardware to be designed and built independent of the
operation system software that will use the hardware. A software callback acts in a
similar way as a trigger for further processing without the knowledge of what exactly that
processing will entail. It is the responsibility of the entity that triggers the callback to
make available whatever information might be necessary by the code that processes the
callback just as computer hardware that generates interrupts needs to have information
available in hardware registers for processing by the driver or operating system.

A software callback is therefore an abstract class with a single pure virtual function
member that we can call Invoke. When a higher-level software entity registers a

13

callback with a lower-level entity, it then provides that lower-level entity with a derived
class to the base class of callback, one that will invoke a member function specific to that
higher-level entity.

This approach allows the lower-level entity to perform processing, invoke the callback to
have that processing recognized, and then possibly continue processing. This approach
thus allows the EPE loop to be written as a single code entity with callbacks at
appropriate points within that processing so that the higher-level Controller and View
components can generate representations of that processing.

4.2 The Resulting Structure in a Wargame
Implementing this approach in a turn-based computer wargame results in the following
structure and possible callbacks:
1. Within the Evaluate section, a possible callback so that results of the evaluation
can be viewed within the application.
2. Within the Plan section, a possible callback so that results of the planning can be
viewed.
3. Within the Execution section, possible callbacks for the actions of movement and
combat so that individual steps in this processing can be viewed in the
applications.

5.0 Conclusion
The resulting code structure and call sequence can be visualized in the diagram below.

14

Controller View Model

ActivateAl me—————— ActAl

!

(Possible) dum— EvalAl

!

(Possible) e—— PlanAl

|

ProcMove s MoveAl
) \/iewMove 1

ProcCombat Wme—— CombatAl
- \/iewCombat

This approach allows a complete EPE Al loop to be coded independent of the graphical
or user interface of the application. This then allows the full benefits of an EPE loop
approach to be realized.

5.4 A Parameterized Minpath Algorithm with Applications to Computer
Wargames

John Tiller

1.0 Introduction
This report addresses the design and implementation of a parameterized minpath
algorithm that is particularly suited for use in computer wargames. There is a high need
for a generalized minpath algorithm in computer wargames. This algorithm has two
important applications:

1. Shortest distance path finding to facilitate user movement.

2. Shortest distance path finding for use by the AL
In most cases, the distance computation that is used for this path finding can be quite
involved and depend on particular issues of the particular wargame engine. In addition, it

15

is not uncommon that the distance computation be based on subjective factors. For
example, in a path calculation that potentially could involve traversing a minefield, how
“costly” should the algorithm consider the casualties resulting from moving through the
minefield as compared with the extra distance involved in moving around it. This
determination can be based on national characteristics. That is, for Russian units, the
casualty cost could be considered quite low while for American units, it could be
considered quite high. Based on this, the algorithm could determine that the “shortest”
path was either through the minefield or around it.

2.0 Framework
In order to efficiently implement the traditional Dijkstra Minpath Algorithm in a
computer algorithm, it is important to recognize that many computer wargame maps are
quite large while the movement path that results may only involve a small fraction of that
map. For this reason, it is impractical to consider constructing a traditional pre-defined
graph with nodes, edges, and costs. Therefore, to achieve an efficient implementation, it
is necessary to define an abstract Dynamic Graph. A Dynamic Graph is based on an
abstract notion of node and has three member functions defined:

e The cost of moving between any two nodes in the graph.

e For each node, a list of adjacent nodes that have not been “marked”.

e For any node, the ability to mark that node and thus consider it part of the search

tree.

When the minpath algorithm resulting in this report is implemented, then a definition of
Dynamic Graph must be provided by the application and these three member functions
must be implemented.

3.0 Implementation
Based on this definition of Dynamic Graph, the traditional Dijkstra Minpath Algorithm
has a straightforward implementation. To construct the minpath between two given
nodes a and b:
e Begin the construction of a tree by including a.
e While not done, consider all nodes adjacent to nodes in the tree, determine the
cost of including each of those nodes in the tree, and pick one of minimum cost.
e As each node is included in the tree, mark it so that only nodes not in the tree are
included in subsequent iterations of the algorithm.
e Stop once node b has been included or no additional nodes exist to include.
e Starting from the last node included, build the resulting path backwards from
node to previous node in the tree until you reach node a.

4.0 Specializations

Once the algorithm is established, it is possible to vary the results by specializing the cost
function. As previously mentioned, one issue in the definition of the cost function is the
determination of “intangible” costs such as minefields. Likewise, another determination
is whether to include the presence of enemy units in the resulting cost. That is, if enemy
units are ignored, the units which are attacking will “charge” the enemy units and
confront them. If enemy units are included in the cost function, then the algorithm may

16

cause the attacking units to bypass the enemy, resulting in unsatisfactory results in the
game.

Another consideration in the definition of the cost function is the extent to which
“detours” are considered. For example, consider the problem of finding the shortest path
across a river. There may be one bridge adjacent to the current location and a second a
large distance away. If friendly units are currently using the bridge and it cannot carry
any additional units, then a strict implementation of the shortest path algorithm would
result in the waiting units moving to the second bridge, a very large detour. This solution
may be completely unsatisfactory to the user. A more prudent solution may be to
appreciate that the bridge may well become available in the next turn and thus it is better
not to move the units at all than to move them towards the second bridge. Thus a
“prudent” cost function may not entertain paths which significantly detour from the more
direct path.

5.0 Conclusion

Based on this discussion, it is possible to define a parameterized minpath algorithm that
has diverse uses in a computer wargame. Since there are multiple needs for path finding
and they have different needs, it is necessary to have a much generalized cost function
which can be specialized based on the needs at any particular point in the program.

5.5 Bayes Belief Networks _ Initial Investigation

John Rushing
1.0 Introduction

A Bayes belief network is a type of Bayesian learner. Bayesian learners are based on
Bayes rule, and use probability estimates to perform classification and prediction. The
primary distinction between Bayes belief networks and the commonly used Naive Bayes
classifier is that the belief networks model conditional dependencies between attributes,
while the Naive Bayes classifier makes the assumption that the attributes of interest are
class conditionally independent of each other. In practice, many data sets contain
attributes with conditional dependencies. For such data sets, Bayes belief networks may
more accurately model the problem of interest than a Naive Bayes classifier.

2.0 Initial Investigation

Bayes belief networks are described at a basic level in many data mining and machine
learning texts such as (Han and Kamber), (Mitchell) and (Duda, ,Hart and Stork). A
more detailed tutorial on the issues and techniques involved in construction and use of
Bayes belief networks can be found in (Heckerman). What follows is a brief summary of
some of the essential issues regarding Bayes belief networks.

17

Bayes belief networks consist of two components: a directed acyclic graph representing
the conditional dependencies of the variables, and a set of conditional probability tables
for each attribute. Determining the structure of the network from sample data is a difficult
task, and in many cases domain knowledge of the user is used to give the network
structure. In some cases, data are later used to refine the structure. There are some
advanced algorithms to infer the structure directly. If there are no hidden variables and
the network structure is known then computation of the conditional probability tables is
straightforward, and proceeds in much the same way as the training of a traditional Bayes
classifier.

One important thing to note is that most work with belief networks focuses on discrete
attributes. Continuous valued attributes present significant additional complexities. The
texts suggest that one way to deal with continuous attributes is to discretize them before
using them with belief networks. This is commonly done for some other machine
learning techniques such as decision trees or association rules. Commonly used
discretization methods include simple binning, histogram based discretization, and
entropy based discretization.

General inference in Bayesian belief networks has been shown to be NP-Hard. However,
given a particular instance with all but one variable specified, it is possible to compute
the probability for each possible value of the unspecified (output) variable from the
conditional probability tables. This mode of operation corresponds to the typical usage of
a supervised pattern classifier.

3.0 Development

The objective of the initial phase of development was to produce a basic implementation
of the Bayes belief network and test it on some simple but realistic problems. Given this
objective, and the information presented above, it was decided to limit the belief network
in the following ways:

Pattern vectors must contain only discrete attributes
Dependencies between attributes must be specified a-priori
Inferences will be performed for only a single variable at a time

More advanced capabilities such as general inference, derivation of the network structure,
and handling of continuous valued attributes may be added later as required. The belief
network software will operate as a supervised pattern classifier. During the training
phase, it will take a set of pattern vectors and a list of variable dependencies as inputs and
produce a network including conditional probability tables as output. During the
classification phase, the network will take a set of pattern vectors as input and produce
labels for each of the pattern vectors.

3.1 Software Structure

18

The software delivered with this report compiles into two libraries (BayesNetworkLib
and BayesDriverLib) and two executables (BayesNetworkTrain and
BayesNetworkApply). The BayesNetworkLib library contains a basic implementation of
the Bayes belief network, including training and classification methods, and methods to
read and write representations of the network. Patterns are passed to the library as
discrete valued (int) vectors. The BayesDriverLib library contains methods to read
problem descriptions and variable dependencies in symbolic (string) form, convert them
into discrete vectors, and call appropriate methods in the BayesNetworkLib to perform
classification and training. The BayesNeworkTrain and BayesNetworkApply programs
read parameters from a command line and use the BayesNetworkDriver class to perform
network training and classification respectively.

Module Description Classes

BayesNetworkLib Basic implementation of Bayes belief BayesNetwork,
network BayesNode

BayesDriverLib Reads problem descriptions in symbolic | BayesNetworkDriver,
form, drives the classifier in PatternSet, Attribute
BayesNetworkLib

BayesNetworkTrain | Builds an executable to use None
BayesNetworkDriver to train a classifier

BayesNetworkApply | Builds an executable to use None
BayesNetworkDriver for classification.

3.2 Building the Software

A Microsoft Visual C++ 6.0 workspace file (BayesNetwork.dsw) and four associated
project files (one for each library and executable) are located in the Source directory of
the zip file. The libraries and executables can be built using these files. In addition, a
CMakeList.txt file is provided so that with the use of the public domain CMake program,
the source can be built on a wide variety of platforms.

3.3 Using the Executables

The BayesNetworkTrain and BayesNetworkApply programs are self-documenting.
Running the programs with no arguments, incorrect arguments, or a —h option will
prompt them to produce a usage message. The syntax for these executables is explained

below:

Program: BayesNetworkTrain

Options:
-b <filename> Name of the Bayes Network file
-h Print this message
-i <filename> Name of the input pattern file
-p Print the network in readable form
-s <filename> Name of the structure file

19

-t Perform consistency test

For BayesNetworkTrain the -b, —i, and —s options are all required, as they specify the
two input files and the output file. The —p and —t options are useful for debugging and
also provide a more human readable description of the network produced during training.
The —p option prints out the conditional probability tables, and the option prints out an
estimate of the likelihood of every combination of attributes. The —t option is not
practical if the number of attributes is large, since the number of combinations is
exponential.

Program: BayesNetworkApply

Options:
-b <filename> Name of the Bayes Network file
-c <class> Name of the class attribute
~h Print this message
-i <filename> Name of the input pattern file
-0 <filename> Name of the output pattern file

For BayesNetworkApply the b, —c, —i, and —o options are all required, as they specify
the names of the input and output files and the attribute that is to be predicted from the
others. The output file will contain a data set in the same format as the input file, with the
values of the specified attribute replaced by values estimated by the classifier.

The input data file must be a pattern set in ARFF format. The arff format has a simple
header, which describes the attributes in the data set. The header is followed by a data
block of pattern vectors, with one pattern per line of the file. Datasets must begin with a
name declaration of the form:

@relation data_name

The name declaration must be followed by a series of attribute specifications of the form:
@attribute attribute name {value_one, value two, .. value_N}
The attribute deélarations are followed by the start of data tag:

@data

Following this tag is a list of pattern vectors, one vector per line. The elements of the
pattern vectors should be separated by commas, spaces or tabs. The fish.arff file provided
in the Fish subdirectory of the zip archive is an example of an arff file.

The structure file lists sets of variable dependeilcies, one dependency per line. The

dependencies are of the form: varl, var2, where var2 depends on varl. The str.txt file
provided in the Fish subdirectory is an example structure file.

20

The Fish subdirectory contains a sample problem derived from the Duda, Hart and Stork
book. It consists of a data set with five attributes that describe the types and
characteristics of fish caught at various places and times. One possible problem is to
predict the type of fish based on the other parameters. The fish.arff file was divided at
random into two sets: trn.arff and tst.arff, which can be used for training and testing the
classifier. To create a classifier based on trn.arff and then classify the vectors in tst.arff,
the following commands can be used: ‘

BayesNetworkTrain -i trn.arff -s str.txt -b bayes.txt
BayesNetworkApply -i tst.arff -c fish -b bayes.txt -o res_tst.arff

The result is the file res_tst.arff, which can be compared to tst.arff to determine the
accuracy of the classifier.

3.3 Using the Library Directly

The Bayes belief network library BayesNetworkLib can be used directly as a pattern
classifier. The class BayesNetwork provides the methods that should be called to do
network training and pattern classification. It also provides methods to read and write
belief networks. The library expects discrete pattern vectors as input. The values for each
attribute must be in the range (0 .. numValues-1). The BayesNetworkDriver class
provides an example of how to call the library. The following examples demonstrate how
to use the library to do training and classification:

Training a Bayes Belief Network

#include “BayesNetwork.h”

// Inputs to the training function, must be filled in
vector<BayesArc> arcs;

vector<int> dimensions;

vector<intvec> data;

// FILL IN VALUES HERE FOR arcs, dimensions, data
// Train the network
BayesNetwork network;

network.Train (dimensions, data, arcs);

// Save the network

network.WriteFile (“bayes.txt”);

Classifying Patterns Using a Bayes Belief Network

#include “BayesNetwork.h”

// Read the trained network
BayesNetwork network;

21

network.ReadFile (“bayes.txt”);
// Classify each pattern
for (int v = 0; v < numPatterns; v++)
{ vector<int> data;
// FILL IN VALUES FOR data
int clsId = network.Classify(data, clsAttr);

// ClsId now has the result of the classification

4.0 Initial Results

In order to test the software, a simple problem statement from the Duda, Hart and Stork
book was used to generate input files for the classifier. The problem involves
classification of fish based on the time and place they were caught and their physical
characteristics. The problem has five attributes: season, locale, fish, lightness, and
thickness. The type of fish caught depends on season and locale. The lightness and
thickness both depend on the type of fish. The problem description also gives the legal
values and conditional probabilities for each attribute. (These tables appear on p. 58 of
the text. There is an error in the P(c[x) table, as the first row does not sum to one. I
assumed a value of 0.2 for P(c|xs) to fix this.) Based on these tables, a program was
written to generate data approximately matching these distributions. The program was
used to generate a sample file with 100,000 pattern vectors (fish.arff). The structure file
specifying the conditional dependencies is str.txt. Both files are in the Fish subdirectory.
The fish.arff file was partitioned randomly into two parts. One part was used to train a
Bayes belief network, and the other to evaluate its accuracy. In addition, the same data
files were used to train and test a decision tree classifier, namely the C4.5 implementation
in the Orange data mining toolkit. The Python scripts used to perform the processing, and
the results are included in the Fish subdirectory of the zip archive. The Bayes network
training software printed out the following conditional probability table, which was
verified to be correct:

Conditional Probability Tables for the Fish Sample Problem

Attribute season:

P(season = Winter |) = 0.250660 (0)

P(season = Spring |) = 0.251400 (1)

P(season = Summer |) = 0.246840 (2)
I)

P(season = Autumn = 0.251100 (3)
Attribute locale:

P(locale = NorthAtlantic |) = 0.599130 (0)
P(locale = SouthAtlantic |) = 0.400870 (1)

Attribute lightness:

22

P(lightness = Light | fish = Salmon_) = 0.599365 (0)
P(lightness = Medium | fish = Salmon_) = 0.202687 (1)
P(lightness = Dark__ | fish = Salmon_) = 0.197948 (2)
P(lightness = Light | fish = SeaBass) = 0.196034 (3)
P(lightness = Medium | fish = SeaBass) = 0.299271 (4)
P(lightness = Dark | fish = SeaBass) = 0.504695 (5)
Attribute thickness:

P(thickness = Wide | fish = Salmon_) 0.300387 (0)
P(thickness = Thin | fish = Salmon_) = 0.699613 (1)
P(thickness = Wide | fish = SeaBass) = 0.601129 (2)
P(thickness = Thin | fish = SeaBass) = 0.398871 (3)

Attribute fish:
P(fish = Salmon_ | season = Winter locale = NorthAtlantic) = 0.500668 (0)

P(fish = SeaBass | season = Winter locale = NorthAtlantic)
= 0.499332 (8)

P(fish = Salmon_ | season = Spring locale = NorthAtlantic)
= 0.601002 (1)

P(fish = SeaBass | season = Spring locale = NorthAtlantic)
= 0.398998 (9) :
P(fish = Salmon_ | season = Summer locale = NorthAtlantic)
= 0.403883 (2)

P(fish = SeaBass | season = Summer locale = NorthAtlantic)
= 0.596117 (10)

P(fish = Salmon_ | season = Autumn locale = NorthAtlantic)
= 0.201054 (3)

P(fish = SeaBass | season = Autumn locale = NorthAtlantic)

= 0.798946 (11)

P(fish = Salmon_ | season = Winter locale = SouthAtlantic)
= 0.699485 (4)

P(fish = SeaBass | season = Winter locale = SouthAtlantic)
= 0.300515 (12) ' '

P(fish = Salmon_ | season = Spring locale = SouthAtlantic)

= 0.807966 (5)

P(fish = SeaBass | season = Spring locale = SouthAtlantic)
= 0.192034 (13) .

P(fish = Salmon_ | season = Summer locale = SouthAtlantic)
= 0.102626 (6)

P(fish = SeaBass |. season = Summer locale = SouthAtlantic)
= 0.897374 (14) '
P(fish = Salmon | season = Autumn locale = SouthAtlantic)
= 0.296223 (7) ,

P(fish = SeaBass | season = Autumn locale = SouthAtlantic)
= 0.703777 (15)

The Bayes belief network and decision tree produced very similar results. The confusion
matrices for each of the classifiers (generated by the ADaM ITSC_Accuracy tool) are

23

shown in the following figure. The classifiers produced similar quality of results, with
accuracies within half a percent of each other. This is not surprising given that the
decision tree is actually using very similar information to perform its classification given
that there only four predictive attributes.

Results for Bayes Belief Network Results for Orange C4.5 Classifier
Classes 2, Samples 50000 Classes 2, Samples 50000
Confusion Matrix Confusion Matrix
| 0 1 <--- | 0 1 <---

Actual Class Actual Class

0 | 16889 5737 0 1 15737 4614

1] 5633 21741 1] 6785 22864

I |

tom——— Classified As tm———— Classified As
POD 0.791215 POD 0.832084
FAR 0.205779 FAR 0.228844
CSI 0.656610 CSI 0.667309
HSS 0.540879 HSS 0.535478
Accuracy 38630 of 50000 Accuracy 38601 of 50000
(77.260000 %) (77.202000 %)

5.0 Future Experiments

The next step is to apply the belief network to a problem related to ground based
wargames. Some potential problems of interest include detection of weak points in front
lines, and detection of danger conditions for specific units. (For example, determining if a
unit is in danger of being surrounded, overrun, losing its supply line etc.). These
problems will be simulated by generating realistic input data representing the situations.
The belief network will be evaluated on this data, and compared to other methods.

6.0 References
R. Duda, P. Hart, D. Stork, Pattern Classification, Wiley and Sons, 2001.
J. Han, M. Kamber, Data Mining: Concepts and Technigues, Morgan Kaufmann, 2001.

D. Heckerman, "A Tutorial on Learning with Bayesian Networks", Microsoft Technical
Report MSR-TR-95-06, 1995.

24

T. Mitchell, Machine Learning, McGraw Hill, 1997.

5.6 Embedding Al Technologies in General Applications
John Tiller

1.0 Introduction

This report address the technical issues associated with structuring Al technologies and
their implementation so that the resulting code is directly callable from general
applications. The result of this study has particular application to the implementation of
Al technologies in computer wargames, where it is necessary to embed Al techniques
into the computer game implementation without releasing control of the user interface or
processing to the technology implementation.

2.0 Overview
There are four specific technologies that are to be considered in this report: Neural
Networks, Expert Systems, Genetic Algorithms, and Bayesian Networks. With respect to
a general Al technology there are 3 to 5 general steps associated with interacting with the
Al code from a general application:
e Populate the algorithm with specific data, in the format of the algorithm, or in
object-oriented terms, invoke an object constructor.
e Optionally or in conjunction with the first step, invoke initialization code
associated with the technology.
Invoke the specific routine associated with the Al technology processing.
Possibly inquire into specific data or results associated with this processing.

The specific routine associated with the Al technology is assumed to either return or
- generate data or results as a consequence of its processing, or alternatively, to invoke
other processing in the Al engine through callbacks.

3.0 Specific Implementations
This report now looks at four specific Al technologies and the specific requirements of
each implementation.

3.1 Neural Networks

The specific implementation of neural networks considered here is called Think. It is
based on an implementation of neural networks by the author written in C++. The
particular sequence of calls involved depends on the specific neural network.

3.1.1 Back-Propagation

The implementation of Back-Propagation involves three steps:
e Declaration of the object constructor.
e A call to Train based on the training data.

25

e For each instance of the input data, a call to Recall to produce the corresponding
output data. '

3.1.2 Counterpropagation
The implementation of Counterpropagation involves three steps:
e Declaration of the object constructor.
e A call to Train based on the training data.
e For each instance of the input data, a call to Recall to produce the corresponding
output data.

3.1.3 Hopfield Networks
The implementation of Hopfield Networks involves three steps:
e Declaration of the object constructor.
e For each training pattern, a call to Encode.
e For each input pattern, a call to Recall to produce the corresponding output
pattern.

3.2 Expert Systems
The specific implementation of expert systems considered here is called Reason. It is
based on an implementation of expert systems by the author written in C++. The
invocation of the expert system involves five steps:

e Declaration of the object constructor.
For each rule, a call to Learn so the rule is stored.
For each fact, a call to Assert so the fact is stored.
A single call to Reason to invoke the expert system.
Inquiry of the output fact from the call, or inquiry of the validity of other facts in
the resulting logic database.

3.3 Genetic Algorithms _
The specific implementation of genetic algorithms considered here is called Evolve. It is
based on an implementation of genetic algorithms by the author written in C++. The
invocation of the expert system involves three steps:

e Declaration of a population object constructor.

e A call to Evolve based on a particular objective function.

e Inquiry of the resulting population.

3.4 Bayesian Networks
The specific implementation of Bayesian networks considered here is called Decide. It is
based on work done by John Rushing at the University of Huntsville-Alabama and is
written in C++. The invocation of the Bayesian network involves three steps:

e Declaration of the object constructor.

e A call to Train based on input data, possibly followed by saving the result.

26

e For each input pattern, a call to Classify to classify the input pattern.

4.0 Conclusion

With the right software design and approach, the implementation of Al technologies in
general applications can be efficiently achieved if the right object-oriented classes are
identified and the specific steps required to implement the technology defined as the
appropriate member functions. This allows applications such as computer wargames to
invoke the Al technology from within its particular Al engine and to make use of the
results again within the engine as opposed to the context of some higher level-driver or
higher-level interface.

5.7 Applications of Expert Systems to Computer Wargame Al Engines
John Tiller

1.0 Introduction
Expert Systems are a way of describing logical structures containing a number of entities
of the two types:

e Facts — data which is known to be true.

e Rules — logical inferences based on known facts with logical conclusions.
In general Expert Systems are non-procedural. That is, they execute based on the facts
and rules they contain but in no particular order. The specific execution order is
determined by the assertion of new facts, which causes rules to be activated based on this
new knowledge.

2.0 Specific Implementation

The author has developed one such Expert System in C++ called Reason. This Expert
System has an internal engine as well as a high-level parser so that it can be used both as
a stand-alone application as well as being able to be embedded in other applications and
callable as subroutine code.

The purpose of this report is to examine the application of such an Expert System to two
instances of computer wargames: one having to do with a ground game and the other
having to do with an air power game.

3.0 Ground Game Example

In Figure 1 is an example of a Ground Recon Expert System written in the Reason
language. Each Expert System starts with a number of rules based on an initial fact.
This initial fact is always true and thus rules which are based on it are always invoked.
The purpose here is to establish starting conditions for the logic, namely that we are
starting under conditions of Event 1 and we are establishing a safety distance of 6 units.

Having established thosé facts, the logic then proceeds to the advancing stage. A random

location on the given map is determined and an order is given to the recon element to
advance to that location in search of the enemy.

27

Once the recon element finds the enemy and is determined to have advanced closer than
the safety distance, the logic proceeds to Event 2 and Event 1 is retracted so that it is no
longer valid.

Establishing Event 2 causes the main body of the force to advance to meet the enemy.
Meanwhile the recon element retires until it is a safe distance from the enemy.

In this way, the natural logic that ground forces would follow is coded in the non-
procedural language of the Expert System and the processing occurs as necessary based
on the circumstances.

// clash.exp

//
// Clash expert.

// Start with Event 1.
(initial fact) => assert (Event 1)
(initial fact) => assert (Safety 6)

// Recon units should search out the enemy.
(Event 1), (Recon #org), !(Objective #org #x), (Width #w),
(Height #h) => assert (Advance #org ((? #w) (2 #h)))

// Once the recon makes contact with enemy, transition to Event 2.
(Event 1), (Recon #org), (Distance #org #d), (Safety #s), (< #d #s),
(Location #org #x) => assert (Event 2), retract (Event 1),

assert (Enemy #x)

// While seeking out the enemy, main body should advance slowly.
(Event 1), (Org #org), (Main #org) => assert (Advance #org slow)

// Once the enemy is engaged, main body should advance to make
contact. :
(Event 2), (Org #org), (Main #org), (Enemy #x) =>

assert (AdvanceTo #org #x)

// While at a distance from enemy, recon should advance.
(Recon #org), (Distance #org #d), (Safety #s), (> #d #s) =>
assert (Advance #org slow)

// Once engaged with enemy, recon should fall back.
(Recon #org), (Distance #org #d), (Safety #s), (<= #d #s) =>
assert (Fallback #org)

Figure 1. Example of Recon Expert System

4.0 Air Power Game Example

In Figure 2 is an example of logic associated with a SAM Site Expert System. The basis
for the logic is the assumption that SAM Sites will be either dormant or non-dormant. 1f
dormant, then the site may or may not become active, but in any event, will not launch
missiles. A non-dormant SAM Site will launch missiles when the opportunity arises.

28

The determination of what SAM Sites are non-dormant is determined to a certain extent
to be random, with the exception that “overlapping” SAM Sites will be both dormant or
both non-dormant. This is to present a consistent behavior for the purpose of IADS.

In the Expert System, basic data concerning the range of the SAM Sites is established. It
is also assumed that additional data such as the distance between SAM Sites is known.
Finally, it is assumed that there are one or more enemy flights in the area and that the
range to those flights is known.

The Expert System begins by making a random determination of which sites will be non-
dormant. It then determines which sites are overlapping and ensures that the assignment
of dormant or non-dormant is consistent for all of them connected in this way.

Finally, if a legitimate target flight appears and the site is known to the non-dormant, then
a command to fire a missile at the target flight is asserted.

This approach uses the available data in a non-procedural way that avoids having to do
various looping constructs in a high level programming language. This allows the logic
to be separated from the programming of the logic and allows it to stand alone where it
can be viewed and easily modified.

// sam_site.exp
//
// Expert system performing SAM site logic.

// Define test data.
(initial fact) => assert (sam_site S1), assert (range 50 S1)
(initial fact) => assert (sam site S2), assert (range 50 S2)

// Randomly assign non-dormant sam sites.
(sam_site #X), (<= (?) 0.1) => assert (non—-dormant #X)

// Two sam sites with one in range of the other are in the same

component. _

(sam_site #X), (sam_site $#Y), (distance #D #X #Y), (range #R #X),
(<= #D #R) => -assert (component #X #Y)

// When two sam sites are in the same component and one is non-

dormant, then

// the other is non-dormant. :

(sam site #X), (sam_site #Y), (component #X #Y), (non-dormant #X) =>
assert (non-dormant #Y)

// If a non-dormant sam site has a target, then it can fire.
(sam_site #X), (flight #F), (can fire #X #F), (non-dormant #X) =>
conclude (fire #X #F)

Figure 2. SAM Site Expert System

29

5.0 Conclusion
Using an Expert System to handle Al logic within a wargame has several advantages:

e The Expert System high-level code serves as a way of documenting the internal
logic of the Al separate from the program itself.

e The Expert System high-level code provides the end-user with a way of
modifying the Al logic without having to have access to or be able to program in
the programming language of the application.

e An approach using an Expert System introduces non-procedural processing into
the Al engine which may provide more intricate logical processing than would
occur with strict procedural code, although this can have both positive and
negative impact.

- The language of the Expert system provides a way of naturally describing the logic

associated with the Al engine without the details of a programming language such as
C++. The resulting statements can be read and understood by themselves without having
to understand the execution context they will occur in. This then results in a very
flexible, transparent, and modifiable AI game engine for computer wargames.

5.8 Al Agents within an HLA Federation
John Tiller

1.0 Introduction

The report looks at the issues associated with incorporating AI Agents within a High
Level Architecture (HLA) federation of simulations. The HLA standard was developed
by the Department of Defense and designed to be used as a standard means for multi-
simulation combinations, or federations, to be built so that the individual simulations can
communication their respective state information to each other and thus result in a
combined simulation environment. One interesting application of this technology is in
the development of the DARPA DARWARS joint training project, which is intended to
support ad-hoc joint training exercises over the Internet using training simulations
specific to the various branches of the military and their respective disciplines. For
example, a joint training exercise could be created dynamically using an Army ground-
based simulation, a Navy simulation, a Marine simulation, as well as having a pilotin 2
flight simulator and a forward-observer using an artillery simulation to call fire support.
The HLA protocol is responsible for communicating state information from one
application to the others so that a consistent joint world-view is generated for all players
in the exercise. In a joint training exercise such as this, the players would then
communicate to each other using a Voice-Over-IP application so that they could
communicate commands and information to each other in their respective sides.

It would not be uncommon in such an ad-hoc training exercise, or even a scheduled
exercise, to have a need for AI Agents to play the role of one or more players in this
federation. Indeed, since the intention is to train our military forces in our doctrine, it
would be best if all of the human players could participate on the friendly side and the
enemy side was under Al control, thus not requiring that any human players opt out of

30

the friendly-side training and also providing perhaps a more challenging opponent for the
human players. Likewise, if one or more human players are not available to server all of
the necessary roles in a particular joint training scenario, then it would be advantageous
to have AI Agents to play these roles and thus enable the exercise to take place at all.

The figure below illustrates one such possible federation where AI Agents are playing the
role of the enemy commanders while human players are playing roles as the friendly
commanders. Notice that the human players have a separate voice channel that they are
using to communicate with. The needs and requirements of the AI Agents that are
necessary to complete this diagram into a working design are investigated in this report.

Red Al'l Red AI 2 Red AIN
App 1 Red App2Red AppNRed
{ HLE Protocol >
App 1 Blue App 2 Blue AppNBlue
Blue Player 1 Blue Player 2 Blue PlayerN
< Voice Channel >

2.0 Issues
In the design of how AI Agents could be incorporated into an HLA federatlon there are
several issues that must be addressed:
e What do the AI Agents communicate to each other?
e How do they communicate this information, within the HLA protocol or is a
separate communication channel required?
e When there is a mixed side consisting of both human and Al players, how is the
communication between human and Al players handled?

The answer to the first question depends on the structure of the AI Agents. For the

purpose of this report it will be assumed that the AI Agents are programmed to follow
logic based on an Evaluate-Plan-Execute (EPE) loop. That is:

31

e Evaluate — Evaluate the current situation both with respect to friendly and enemy
forces.
Plan — Based on that evaluation, create plans on course of action.
Execute — Using these plans, execute them and resolve the action resulting from
them.

Based on this assumption, then each part of the EPE loop would need to be
communicated to the other agents on the same side:
e What is the evaluation of the agent’s forces and opposing forces? In military
terms, this is called a situation report. '
e What plans does each agent have and how do these plans relate to each other?
e How is the execution of these plans coordinated between the agents?

Since coordination between agents is necessary, it would like be the case that the optimal
approach would involve designating one of the agents as being the so-called Joint
Commander, having overall command of a particular side. Indeed, in human-based joint
training exercises, this would likely be the case as well so that individual actions by the
players would have a basis for coordination.

Using a Joint Commander approach, then one of the AI Agents would be responsible for
creating an overall plan based on the information received by that agent from the others.
This overall plan would then be communicated back to the individual agents who would
be responsible for generating lower-level plans from it. In military terms, these lower-
level plans are called a frag (or fragmentation) order. Finally, the Joint Commander
would then be responsible to coordinating the individual execution of the plan so that
related tasks such as conducting air support attacks before advancing on the ground was
accomplished.

3.0 AI Agent Communication

After the issue of what the AI Agents communicate and how this communication is used
and coordinated is addressed, the remaining question is whether this information can be
conveyed within the HLA protocol or whether a separate AI communication channel
must be established, much like human players would establish a separate voice channel
for their high-level communication.

HLA is based on an object-model with single inheritance. A Run-Time-Interface (RTI)
exists to communicate information between applications in a federation. Within the
context of a federation, it is possible for applications, or federates, to declare Object
Classes, declare Object Instances, and to communicate the value of Object Attributes for
an object instance to other members of the federation. Because the purpose of the HLA
is to communicate these Object Attribute values to other members of the federation, the
HLA Object Model does not extent to member functions and all attributes of the objects
are readable.

32

In addition to standard object classes, HLA supports the definition of Interaction Classes.
Interaction Classes represent actions which may be taken by one federate which could
impact other federates. This feature is used to allow objects from different federates to
interact in the joint simulation.

Based on this design, then a possible way for AT Agents to proceed in a federation would
be as follows:
o The Al Agents publicize their object models of evaluation, planning, and
execution to the other agents in the federation.
e Based on a prior design protocol, the agents could negotiate for the role of Joint
Commander.
e The Joint Commander agent could then poll the AT Agents for evaluation data,
coordinate the generation of planning data, and then coordinate the execution of
planning data between the agents using the object classes previously defined.

4.0 AI Agent to Human Communication

When the AI Agents are used as participants in an otherwise human team, then there isa
need to have communication between those agents and the human player in ways that
work with both the processing of the agents and the communication levels of the human
player. In one direction, from agent to human player, it would be possible to incorporate
Text-to-Speech technology in the Al agent, or in the communication infrastructure of the
human player, so that information and commands generated by the AI Agent could be
verbalized to the human player. In this way, it would naturally be incorporated into the
default voice-based communication of the other players.

In the other direction, from human player to AT Agent, two possible approaches are
possible. In one approach, speech recognition could be incorporated so that the voice
commands and voice information of the human players could be converted into data that
could be recognized by the AI Agent. A simple protocol for communicating in this way
would need to be designed so that the resulting information was simple and unambiguous
to the AI Agent, given the current limitations in AI language processing. Alternatively,
the human player using the application interface of their simulation, could enter these
commands and information using standard mouse-and-keyboard commands. While this
would be less efficient than the voice recognition approach, it may work better depending
on the specific application environment and players involved. In any event, it would
probably be prudent to incorporate this ability as a back-up to speech recognition even if
that was the preferred approach.

5.0 Conclusion

In HLA federations, especially those being used for joint training, the need for Al Agents
to act as players for various sides and roles is clear. The implementation of these Al
Agents can be done in such a way that a coordinated course of action results, whether
these agents are acting by themselves on one side or in mixed teams with human players.

33

5.9 Implementing National Characteristics in Wargame Al
John Tiller

1.0 Introduction

The development of a challenging and adaptable Al for computer wargames also involves
providing the human player with a programmed opponent that reflects certain national
characteristics. Doing this provides the human player with training and experience in
potential enemy responses and possible ways to respond to those characteristics. At the
very least, having these characteristic responses in the Al means that the human player
has been exposed to them and they are not completely unknown to the player. This
report looks at how such national characteristics can be programmed into wargame AL

2.0 Overview
The author has developed over 30 commercial computer wargames and has encountered
the issue of national characteristics in several instances. Two good examples of these are

'with respect to the Japanese and Russian armies during World War II:

o The Japanese soldier was taught that surrender was a dishonorable action,
regardless of the situation. Likewise, the soldier understood that the suicide
charge, or Banzai Charge, was an honorable way to respond to a hopeless
situation.

e The Russian army felt that maneuvering around enemy minefields was a military
mistake. Their experience had been that when this was done, it only exposed their
forces to devastating fire purposely sited at the bottlenecks that resulted.
Although contrary to the Western way of thinking, they felt that it was actually
more humane to send their forces directly through enemy minefields and take the
resulting casualties, than to expose their forces to devastating enemy fire and
incur much higher casualties.

With respect to the non-Russian Allied forces in World War II, there was also a
sensitivity to casualties. Particularly in the case of the British, there was the issue that
high casualties, even in the case of a significant military victory, were not politically
acceptable to the nation and had to be avoided in order to retain popular support for the
war at home.

3.0 Implementation
There are a number of ways that national characteristics can be implemented in a
computer wargame so that the resulting effect both induces the correct behavior from the
Al and also limits the human player to respond in ways that reflect national
characteristics:
e Parameterization — It is possible to introduce numeric parameters which can be
calibrated in value to attain the proper effect.

34

o Rule Effects — It is possible to program additional rules that reflect national
characteristics and then have these rules only apply to the specific nationalities
involved.

e Victory Conditions — It is possible to introduce modifiers to the default victory
conditions in the wargame so that effects that transcend the military outcome can
be incorporated into the final victory determination.

These techniques are considered in detail in the following.

3.1 Parameterization

In the case of the Russian behavior towards avoid minefields, the Al can be calibrated so
that the corresponding effect is achieved through the use of parameters in the minpath
algorithm. The Al uses the minpath algorithm to determine paths for the units under Al
control. This algorithm uses the standard movement costs associated with various terrain
in the scenario as well as additional effects such as how disruption of the units involved
can increase their movement costs. In the case of this national characteristic, it is
possible to introduce a minefield parameter which reflects the “cost” of moving units
through known minefields. This parameter value can be set depending on the effect
required:

e When the minefield parameter is set high, it indicates that there is a high cost
associated with moving through minefields. This will cause the minpath
algorithm to avoid minefields except in extreme situations where no other path is
available.

e When the minefield parameter is set low, then the minpath algorithm will readily
find paths that include minefields. This would then reﬂect the Russian national
characteristic to not avoid minefields.

o The minefield parameter can also be set so that movement through minefields is
considered impossible and thus the minpath algorithm would always find an
alternative path, or refuse to move the units at all if no alternative were available.
In many cases, this could reflect more Western notions of maneuver.

3.2 Rule Effects

In the case of the Japanese Banzai Charge, a new set of rules needs to be introduced
which implements this effect in the wargame. Further, the game engine is coded so that it
recognizes that the new rules only apply to Japanese forces. These new rules would then
implement the characteristics of the Banzai Charge and the extent to which they could be
utilized by the Japanese side. In this way, the new rules not only induce the proper Al
behavior in the Japanese Al, but also support this national characteristic in the case of a
human player on the Japanese side.

In addition, the extreme reluctance to surrender can also be programmed with an
additional rule, which precludes surrender for Japanese units. Again, this results in the
correct behavior for the Japanese side, in both the case of the Al player and the human
player, since it is made part of the basic rules of the game engine.

3.3 Victory Conditions

35

In the paper, “Casualty Budgets - with applications to both military planning and
commercial wargaming”, Col Matthew Caffrey, USAFR, and the author of this report,
developed the concept of a Casualty Budget for a particular participant in military
conflict. This notion is based on the principle that in certain situations, a participant in
military conflict is constrained by the number of casualties they can suffer and still retain
political support for the conflict. This has been seen in many historical instances such as
the Western Allies in World War II and the American Army in the Vietnam War. When
the casualties for an affected side reach a certain level, there is an impact to the victory
conditions for the side that transcend the pure military situation. This affects the ability
of the commander for that side to pursue military solutions and to take into account the
political impact of their decisions.

In a computer wargame, there is always a calculation of victory associated with outcome
of the scenarios. In most every case, this calculation takes into account casualties for
both or at least one side. The implementation of a Casualty Budget then modifies that
calculation by imposing an upper bound on the allowed casualties for a particular side.
When this upper bound is invoked, it then forces the victory calculation towards a loss for
the affected side that is independent of the casualties for the opposing side or the
objective points that the affected side might acquire.

The net result of this effect is to compel the affected commander to reduce the tempo or
intensity of their attack or fighting in general. This effect would apply to both an Al
opponent, programmed to account for the effect, and a human player who was playing in
an optimal manner.

4.0 Conclusion

This report has addressed how there are multiple ways in which national characteristics
can be implemented in a computer wargame in such a way that the desired behavior is
generated in an Al opponent and also how national characteristics for both the Al and
human player can be generated. These implementations range from simple numeric
parameterization of certain effects to programmed rule changes, and additional rule _
effects specifically designed to induce characteristic behavior from the player, be it Al or
human.

5.10 The Technical Implementation of Plug-and-Play Al in a Computer
Wargame

John Tiller

1.0 Introduction :

It is desirable in the design of an adaptable computer Al in computer wargames to have a
design that allows for new technologies to be introduced in a plug-and-play fashion. That
is, by having a flexible design that allows for new technologies to be introduced without
requiring access to or recompilation of the wargame source code. With this achieved, it

36

is possible for third-parties or even the end-users themselves to make changes to the Al
implementation and thus have a high degree of flexibility.

2.0 Implementation

In most computer operating systems, the concept of dynamically invoked code is
implemented through dynamically-linked libraries. Such libraries exist as separate files
from the main executable, but are dynamically-linked at run-time with the main program
code to form the final run-time executable. In this way, new versions of the library code
can be introduced without requiring recompilation of the main program code or access to
its source code. This report considers this approach under the Microsoft Windows
operating system.

3.0 Technical Issues

There are two technical issues regarding the implementation of Plug-and-Play Al in this
design. The first technical issue is how to code and compile a Windows dynamically-
linked library, or so-called DLL file. To achieve this, the functions in the DLL must be
declared as export functions. This is done by using the Win32 declaration:

__declspec(dllexport)
To facilitate this in code development, a declaration is typically introduced:
#define dllfunction __declspec (dllexport)

This then results in function declarations for functions in the DLL having the general
form:

dlifunction void __ stdcall function ();

The Microsoft Visual C++ compiler can then be configured to compile this code as a
DLL file.

The next technical issue has to do with how to structure the DLL code so that it interfaces
with the other code in the game engine. This assumes that the game code is designed
using the Model-View-Controller design pattern with the game engine encapsulated in
the Model section of the design. Here we will assume that the top-level class of the
Model code is declared to be Mode1. This class is assumed to have certain public
member functions which describe the actions and behavior of the game engine itself. Ina
standard in-line design of the Al code, the Al functions would then call these member
functions to determine the state of the game engine and the impact of game rules.

In the design of these Plug-and-Play Al components, it is necessary to design them in a

more third-party manner. However, it is necessary that these external Al calls must still
have access to game state and rule information. For this reason, it will be the case that

37

most every call to the external code will pass a pointer to class Model as the first
parameter. In a sense, this represents the abstracting of the internal calls using the so-
called this pointer. With this understanding, we can then understand that most calls to
the DLL code will have the general declaration:

Dllfunction void _ stdcall function (const Model
*model, ..):

Notice that the pointer to class Mode is declared to be const meaning that the external
Al code will have access to the game state and rule information, but not be able to change
it directly.

4.0 Conclusion

This report has considered the technical details involved in coding and compiling external
Plug-and-Play Al routines for use in computer wargames. This turns out to be a straight-
forward implementation of the Windows DLL concept. The resulting implementation
has the advantage that the external code can then depend or be implemented in a wide-
variety of Al techniques without requiring a redesign of the Al engine or even its
recompilation.

5.11 DBSCAN for Determination of Front Lines
John Rushing
1.0 Introduction

There are many interesting problems in ground-based wargames related to identification
of front lines. The Al for a wargame should be able to determine where the fronts are,
which units constitute the front, and the locations of any gaps or weak points in the front.
There are many possible ways to address these problems, including the use of general-
purpose segmentation and clustering algorithms. This report demonstrates how one such
technique, Density Based Spatial Clustering of Applications with Noise (DBSCAN), can
be used to identify groups of units that constitute front lines.

2.0 DBSCAN Algorithm

DBSCAN is a density based clustering algorithm. It identifies groups of samples or
patterns that are connected by contiguous dense regions in the pattern space. Unlike many
commonly used clustering techniques, it is capable of forming clusters of arbitrary shape
and size. The algorithm scales very well as it only requires a single pass through the input
data set. DBSCAN is capable of identifying outliers, or patterns that do not fit well in any
particular cluster. DBSCAN is typically used in clustering applications with sets of
continuous variables. These variables constitute an N dimensional space where each
dimension or axis corresponds to a variable. The variables are often normalized to have

38

the same range so that they are given equal weights by the distance function. There are
several definitions, which are key to the algorithm (Ester, 1996):

e Epsilon Neighborhood: The epsilon neighborhood of a pattern or objects is the
area within a radius epsilon of the object. Epsilon is a parameter for DBSCAN.

e Core Object: An object is a core object if its epsilon neighborhood contains at
least minPoints objects. MinPoints is an input parameter for DBSCAN.

o Directly Density Reachable: An object p is directly density reachable from
object q if p is within the epsilon neighborhood of q and q is a core object.

e Density Reachable: An object p is density reachable from object q if there is a
chain of objects pl, p2, ... pn, p! = q pn = p such that pi+1 is directly density
reachable from pi :

o Density Connected: Objects p and q are density connected if there is an object o
such that both p and q are density reachable from object o

A density-based cluster is a set of density-connected objects that is maximal with respect
to density reachability. In other words, it is the largest set of objects that can be formed
from a particular core object such that all objects in the cluster are density reachable from
each other. Any object not in a cluster is considered an outlier (noise). DBSCAN first
finds all core objects, and then iteratively adds all objects reachable from each core,
merging cores as necessary. The algorithm is O(n log n) using a spatial index, O(m2)
otherwise. The performance depends on the size of the neighborhood and whether there
is an efficient way to identify neighboring objects in the pattern data. The input
parameters epsilon and minPoints have significant impact on the performance of the
algorithm. The settings for these parameters vary by problem domain and data set.

3.0 Application of DBSCAN for Ground Based Wargames

DBSCAN can be used to identify fronts in ground-based wargames by identifying
continuous groups of units that are close enough together to provide mutual support.
Friendly units that constitute a continuous front line will be grouped into a single cluster,
while isolated units will be identified as outliers. Gaps in the front will be exposed, as the
units on either side of the gap will be in different clusters. The epsilon and minPoints
parameters are used to define the conditions for a viable front line. The algorithm can be
applied multiple times with varying levels of epsilon and minPoints to identify lines of

varying strength. :

The DBSCAN algorithm assumes that there is a meaningful distance measure that is
defined for the input patterns. In the case of an N-dimensional pattern space, distance
measures such as Manhattan distance and Euclidean distance are commonly used. For
ground-based wargames, it makes sense to consider the movement cost of the shortest
viable path from unit to unit. This path must take into account variable movement costs
for different types of terrain, impassable hexes, features such as roads, rivers and
railroads, and the presence of enemy units. It may be desirable to vary the radius by unit
type, as some units are much more mobile than others.

39

Another important consideration is the strength of the units. A group of very weak units
may not constitute a viable front, even if there are large numbers of them. The total
strength of the units in a particular region is therefore more interesting than the number of
units. The DBSCAN algorithm can be modified to accomplish this simply by summing
the strength of the units in the epsilon radius. In this case, the minPoints parameter
becomes a minStrength parameter instead. Assignment of a strength rating will depend

on the game engine and rules of the game, and may consider factors such as the size of
the unit, its supply state, its morale level, any attrition it has suffered and other factors.

4.0 Development

The objective of the initial phase of development was to produce a basic implementation
of DBSCAN algorithm, adapt it for use in ground-based wargames, and test it on some
simple but realistic problems. In order to do this, a simple wargame model and
visualization module were required. The goal of these modules was to allow some
scenarios to be formulated to test the operation of the DBSCAN algorithm on some
simplified data. For future phases of development, a more comprehensive and realistic
game model could be used instead. The game model provides important information to
the DBSCAN algorithm, such as unit to unit distances and unit strengths.

4.1 Software Structure

The software delivered with this report compiles into a library and an executable. The
library contains a basic wargame model, and the executable contains the DBSCAN
algorithm and a small command line driver for the algorithm. There is also a directory
with a set of icons used by the program.

Module Description Classes / Functions
Model A very simple wargame model, includinga | Unit, Model, Viewer,
data reader and viewer Reader, Image, Point
DBSCAN An implementation of DBSCAN built on DBSCAN Algorithm,
top of the wargame model Driver Program
Icons A set of icons (images specified in text Icons, *.txt
files) used by the program

4.2 Building the Software

A Microsoft Visual C++ 6.0 workspace file (DBSCAN.dsw) and two associated project
files (one each for the library and executable) are located in the Source directory of the
zip file. The libraries and executables can be built using these files. In addition, a
CMakeList.txt file is provided so that with the use of the public domain CMake program,
the source can be built on a wide variety of platforms.

4.3 Using the Executable

40

The DBSCAN program is self-documenting. Running the program with no arguments,
incorrect arguments, or a —h option will prompt them to produce a usage message. The
syntax for this executable is explained below:

Program: DBSCAN

Options:

-h Print this message

-e <epsilon> Epsilon radius for DBSCAN

~-i <filename> Name of the input model

-0 <filename> Name of the output image

-s <strength> Min strength for core objects
Description:

The DBSCAN program reads a game model (including map
and units) and plots it to an image file.

The —i, and —o options are required as they specify the input and output file. The — and —
s options specify the conditions required for core objects, which controls how strict the
conditions on the clusters are. The input data set is a wargame model, specified in two
ASCII text files: one for the units and another for the map. The model file contains a size
in hexes and a reference to the map file, and then a list of units. The units are specified
one per line. Each line has the following information, delimited by the “-* character:
unique id, nation, unit type, attack strength, defense strength, movement allowance,
starting hex, and flag word. There are two legal values for nation (Red and Blue) and
three types of units (Inf, Cav, Art). The map is very simple and is assumed to consist of
four types of terrain: clear, rough, mountain, and ocean. The map file has a size in hexes
as the first line, then lists of hexes for rough terrain, mountains and oceans. Hexes are
assumed to be clear if no terrain modifier is specified. The output of the executable is a
binary image file. '

Several sample model files are provided in the top level directory: model*.txt. They all
reference the same map file, Map.txt. A sample Python script Plot.py runs DBSCAN on
the model files and produces gif images from them. The script uses the
ITSC_CvtlmageToGif program and the file img.ctbl to convert the binary images to gifs.
Sample results are included in the top level directory and are referenced later in this
report.

5.0 Sample Results

In order to test the software, some simple cases were devised. In each of the figures in
this section, there are two opposing sides, Red and Blue. There are infantry units with
defense strength of 5 and cavalry units with defense strength of 2, represented by the
standard symbols. There are four types of terrain: clear, rough, mountain, and ocean. The
clear hexes are white, rough hexes tan, mountain hexes brown and ocean hexes blue. The
clear hexes have a movement cost of 1, rough hexes 2, and the mountains and ocean are
assumed to be impassible.

41

There are five cases illustrated below. The units forming the line are linked by green lines
plotted from center to center of the connected units. A cluster consists of all connected
units. Units connected by plotted lines are within each others epsilon radius. The first
scenario is the simplest case: two straight opposing lines through clear terrain. The
second scenario shows the Red and Blue lines split by a mountain range. In addition,
there is a weak point in the southern part of the Red line. When DBSCAN is run with
liberal parameters (epsilon = 2, minStrength = 6), the southern part of the red line appears
unbroken (Scenario 2A). When DBSCAN is run with more strict parameters (epsilon = 4,
minStrength = 7), a gap in the line appears, and one of the cavalry units is shown to be
isolated (Scenario 2B). Scenario 3A shows long lines through rough terrain. Scenario 3B
shows the result of a Red parachute drop into the mountain pass that is part of the Blue
line. The result is a break in the Blue line, and two isolated Blue units to the north of the
pass.

One important thing to note is the dependence on the epsilon and minPoints /
minStrength parameters. In the current version of DBSCAN these parameters are fixed.
However, it may be desirable to automate the setting of these parameters based on game
context (perhaps based on attack strength of opposing forces?).

Scenario 1: Simple Lines with No
Disruptions

| Scenario 2A: Lines Broken by Intervening Terrain / Distance |

42

Scenario 3A: Long Lines Through

Rough Terrain

43

Scenario 3B: Parachute Drop Cuts Blue
Line, Isolates Units

6.0 References

M. Ester, H-P. Kriegel, J. Sander, X. Xu, “A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise”, Proc. 2" International Conf. on
Knowledge Discovery and Data Mining (KDD-96).

5.12 Graphical AI Technologies

Drew McDowell

Stottler-Henke noticed a need among game developers for a simple Al toolkit that
would make Al design more approachable and efficient. SimBionic is the result of their
development effort.

SimBionic provides a graphical user interface for designing game entity AI’s,
though it does not have to be restricted to game development. The Al designer visually
draws out a representation of the Al in a dataflow manor using pre-coded conditions and
behaviors. Once an entity’s overall behavior has been described, the representation is
‘compiled’ down into a small format which the SimBionic library can read and interpret.
The game developers then link their game code against the Simbionic library which then
executes the compiled scripts in the context of the game. '

The two key SimBionic advantages seem to be the graphical representation of
decision flow, and the ease of re-combination of component parts. The graphical
representation is quite nice and as the introduction points out, is perfect for representing
your work to non-programmer collaborators. The component design approach allows
content developers to generate customized Al behaviors in much the same way as a child
builds a castle from differently shaped of wooden blocks.

To use SimBiotic, a programmer must develop a basic toolkit of simple actions
built upon their provided scheduling, load balancing, and interprocess communication
facilities. It may prove tricky to implement complex learning algorithms within this
framework. However, once a general set of components are defined a non-technical
content creator can combine them into new behavioral entities with relative ease. This
requires a higher initial investment of effort, but allows for much more varied and
interesting content to be generated for the game relatively quickly. Simbionic’s visual
debugger could also provide productivity gains because debugging work may be done at
a higher level of abstraction.

The component organization approach that Symbionic uses appears to be similar
to current ‘operation oriented’ data mining and expert system packages such as EVE,
Eagle, Clementine, and Orange with a more highly developed user interface.

<Remaining text deleted because of proposal page limits. More information can be found
in the final Phase I report.>

45

5.13 An Architecture for the Development of Al Avatars
John Tiller

1.0 Introduction

This report discusses an architectural approach to the development of Al “avatars”
specifically designed for application with training games. The notion of an avatar
extends the standard definition of artificial intelligence by adding specialized
characteristics such as personality and the ability to interface with humans using speech,
gestures, and facial expressions. The architectural approach taken here builds on the
standard architecture of Evaluate-Plan-Execute for Al and provides a flexible approach
for the development of Al avatars when permits the introduction of new technologies in a
“plug-and-play” manner.

2.0 Outline
There are five major components to the architecture described here. These are shown in
Figure 1 below. The components in this diagram are:

EPE — The Evaluate-Plan-Execute Al engine.
Simulation — The simulation engine.

CTM - A Character Traits Module, described below.
HIM — A Human Input Module, described below.
HOM - A Human Output Module, described below.

CT™™

1

HIM pe» EPE m=s HOM

!

Simulation

Figure 1. The overall avatar architecture.

46

In this approach, the various modules interact with each other through well-defined
interfaces. This approach allows the specific implementation of any individual module to
be variable as long as the interface remains the same. In this way, new technologies can
be introduced into the architecture in a “plug-and-play” manner, thus greatly extending
the useful lifetime on the approach.

3.0 Enhanced EPE Engine

The EPE engine associated with this approach would have to support not only the basic
Al processing required to interface with the simulation, but also additional input and
output to interface with the avatar components. These interfaces would be constructed
along multiple channels of information as follows:

Channel 0 — Language channel.
Channel 1 — Expression channel.
Channel 2 — Emotion channel.
Channel 3 — Gesture channel.

That is, the basic communication channel that the EPE engine would have to support is
that of language output and language recognition. Given the specialized nature of the
environment, it would not be necessary to implement full language recognition, a
challenging task, but rather only a limited extent of language processing based on the
particular situation involved. For example, if the Al avatar was intended to implement a
fighter pilot character, then the basic commands involving where to fly and what target to
attack would be all that would be required. This may in fact be conveyed through the
human selection of buttons and points on a map, or it could be more sophisticated
through voice recognition of the commands.

The higher channels would then be used to modify that input to generate appropriate
reactions by the Al processing. For example, when told to “Watch out!”, a sense of
urgency could be conveyed through the Expression Channel that would cause the Al to
process this input with a higher priority than normal. If the human is also gesturing
towards a particular location, then this could further influence the Al processing to look
for information in that direction.

4.0 Character Traits Module
The purpose of the Character Traits Module is to influence the nominal execution of the
EPE loops in the Al engine so that a type of personality to the Al processing results.

For example, by modulating the processing of the Execute phase of the Al engine, the
resulting actions of the Al could vary from bold to cautious. Likewise, by modulating the
Plan phase, the results could vary from Reckless to Pedantic. Finally, by influencing the
Evaluate section, the Al could be seen to be foolhardy or tedious.

47

This approach allows a nominally constructed Al engine to be influenced in a way that
varying types of behavior can result. By localizing this feature in an independent module
and interfacing it to the EPE engine through an interface, each module can be developed
independently and with maximum results.

The resulting CTM would have various levels of implementation based on the following:

e National Characteristics — Implements traits common to a group.
¢ Personality Characteristics — Implements traits specific to an individual.
e Mood/State Characteristics — Implements time specific traits.

That is, the design of the CTM module might proceed along these lines. First, it may be
understood that the avatar is intended to be American. Second, the avatar could be
designed to implement the personality of a fighter pilot. Finally, the time specific traits
could be designed to reflect the varying feelings of that pilot in combat, such as anxiety
or confidence. Putting these together then would result in the appropriate characteristics
for an American fighter pilot in combat, suitable for implementation in the test-case
described in the conclusion of this report.

5.0 Human 10 Modules

There are two Human IO Modules in this architecture. One, the HIM input module, is
responsible for taking human input and converting it into a form useful to the EPE
engine. Likewise, the HOM output module, is responsible for taking output from the
EPE engine and generating a representation of that output for a human player.

Each of these modules interfaces to the EPE engine through a well-defined interface. In
this way, varying implementations of each module are possible. The basic approach to
the HIOM interfaces is through “channels”.

Each channel conveys a different type of communication. Any particular implementation
of a Human IO Module may implement some or all of these channels. This allows
implementations of varying complexity and sophistication to be design and built.

With respect to the Human Output Module, the following channels are envisioned:

HOM Channel 0 — Text and graphical output.
HOM Channel 1 — Voice generation.

HOM Channel 2 — Face animation.

HOM Channel 3 — Body animation.

Channel 0, text and graphical output, is the minimal level of support by any HOM. That
is, the default HOM would cause text and graphical information to be generated from
results conveyed to it by the EPE engine. At the next level of support, an HOM would be
capable of generating spoken text from the same results. Moving up to higher levels of
sophistication, an HOM would be capable of displaying a head, presumably human, and

43

animating that in appropriate ways based on the results from the EPE engine. Finally, at
the highest level of sophistication, a complete body would be displayed and appropriate
gestures and body language would be generated.

For example, in a given situation, the following results would be generated by the EPE
engine.

HOM Channel 0 — “The hell with you!”
HOM Channel 1 — Shouting.

HOM Channel 2 — Angry Face.

HOM Channel 3 — Obscene gesture.

Depending on the level of sophistication of the HOM, the resulting output could either be
simply the words conveyed on channel 0, or an appropriate level of shouting by voice
generation technology, or combined with an animated face, or finally, with the full body
language conveyed by channel 3.

With respect to the Human Input Module, the following channels are envisioned:

HIM Channel 0 — Text and mouse input.

HIM Channel 1 — Voice recognition.

HIM Channel 2 — Face recognition.

HIM Channel 3 — Body-language interpretation.

In the same way as output is handled, a particular implementation of an HIM would
support one or more of these channels. For example, at the minimal level of support, an
HIM would be able to convert text and mouse input from a human into appropriate input
for the EPE engine. Likewise, at the next higher level of support, an HIM would be able
to do voice recognition and convert that into an internal format. At the more
sophisticated levels, the HIM would take picture or video input and be able to do facial
recognition and body-language interpretation on that input.

6.0 Implementation
On possible development of such an Al Avatar architecture could proceed along two
lines, one military oriented and one commercially oriented:

e F-16 pilot avatar — Based on the Microsoft Flight Simulator program.
e Risk board game avatar — Based on a computer version of the board game Risk.

In the first instance, the goal would be to implement a pilot avatar capable of expressing
itself in standard military aviation terms. Likewise, it should be capable of accepting
standard flight commands from a human through voice recognition.

In the second instance, a board game playing avatar would be developed that would be

oriented towards more social interaction. This avatar would be capable of interfacing
with a human player through more social interaction that would be common in a situation

49

involving a board game. Expressions of optimism, frustration, and other typical game
playing interaction would be supported. It would also be possible to implement common
facial expressions so that as the game progressed, the avatar would display the
appropriate facial expressions and reactions for the current state of the game.

Finally, it would then be possible to integrate the F-16 pilot avatar implementation into a
DARWARS compliant federation using the structure of HLA as described in the report
“Al Agents within an HLA Federation”, previously written by this author. With this, it
would then be possible to invoke the pilot avatar as needed by the participants in the
DARWARS federation depending on the need or desire for an avatar pilot to complete
the training scenario.

5.14 Continuous Path Algorithms
John Rushing
1.0 Introduction

This report describes a series of experiments with continuous path optimization
algorithms for planning flight paths. A flight path represents the path an aircraft would
traverse when flying a mission. A flight path is assumed have a start point, target and
termination point (which may be different than the start point or the same). The points are
modeled using continuous x-y coordinates. The flight path is limited to a fixed number of
segments. A set of hazards is defined in the same space. Each hazard has a location, a
threat radius, and a threat rating. These hazards represent enemy air defenses such as
surface to air missiles and AAA. The risk is assumed to be proportional to the time spent
within the threat radius of the air defense system. Flying faster will reduce the threat but
consume more fuel. An optimal flight path is one that minimizes the risk to the aircraft
while satisfying fuel usage constraints. The objective of the continuous path algorithm is
to find flight paths that minimize risk and satisfy fuel usage constraints.

2.0 Genetic Algorithm Formulations

Genetic Algorithms (GAs) are general-purpose search and optimization procedures.
Genetic algorithms minimize or maximize an objective function with one or more
parameters. The parameters must be coded in the form of a fixed length string of bits,
which the genetic algorithm manipulates. The main component of the objective function
for a flight path optimization is the sum of the threats posed by the enemy air defenses
over the course of the flight path. A secondary factor is fuel usage, so a shorter path is
preferred over a longer one with equal risk. A large penalty is applied for a path that
consumes more than the available fuel. There are many possible ways for encoding a
flight path as a bit string. In the experiments described below, three methods were
explored:

50

e Absolute Point Encoding: The flight path is represented by a series of vertices.
The vertices are specified by x-y coordinates on a grid. Each N bit section of the
bit string specifies an x-y grid location. A larger N corresponds to a finer grid.

o Relative Point Encoding: The flight path is again represented by a series of
vertices. The vertices are initially spaced equally along a straight path from source
to target to exit. Each N bit section of the bit string specifies an x-y offset for a
vertex from its initial position.

¢ Relative Path Encoding: The bit string represents a set of offsets or deltas. Each
N bit section corresponds. to a single x-y delta. The sum of the x deltas is
normalized to the x distance required by the flight, and the sum of the y deltas is
normalized to the y distance required by the flight.

3.0 Greedy Search Formulation

One issue with all of the GA formulations is that the distances, whether relative or
absolute, must be encoded as fixed length bit strings. This limits the possible moves or
positions, and is similar to using a placement grid, albeit of fine resolution. An alternative
approach is to try moves of continuous size within some reasonable range. One way to do
this is to use a greedy search procedure such as the following:

Do
improving = false
Pick a random distance D
For each vertex in the path
Try moving vertex N, S, E, W, NW, SW, NE, SE by D

units
Evaluate cost of new path
If (new path better than old path)
Accept new path as best so far
improving = true
EndIf
EndFor

While (improving)
4.0 Development

Three modules were developed to support the flight path experiments. The first
component is a flight path evaluation library. The library is capable of reading and
decoding bit string that represent flight paths, and then evaluating their cost given a set of
hazards. Two programs were built using this library: an objective function program for
use with a genetic algorithm, and a greedy path optimization program that implements the
procedure described in section 3.

4.1 Software Structure

51

The software delivered with this report compiles into a library and two executables. The
library contains a basic wargame model, and the executable contains the DBSCAN
algorithm and a small command line driver for the algorithm. There is also a directory
with a set of icons used by the program.

Module Description Classes / Functions

ContinuousPath | A library which contains methods for Mission, Path, Threat,
reading hazards and evaluating flight paths | Point

PathCost A program which takes bit string, decodes | GA Driver Program
into a flight path, and returns evaluation

MinPath A program which implements a greedy Greedy Optimization
search to optimize flight paths Driver Program

4.2 Building the Software

A Microsoft Visual C++ 6.0 workspace file (ContinuousPath.dsw) and three associated
project files (one each for the library and executables) are located in the Source directory
of the zip file. The libraries and executables can be built using these files. In addition, a
CMakeList.txt file is provided so that with the use of the public domain CMake program,
the source can be built on a wide variety of platforms.

4.3 Using the Executables

The continuous path programs are self-documenting. Running them with no arguments or
the incorrect number of will prompt them to produce a usage message. All arguments are
required for both programs. The syntax for the executables is explained below:

Usage: PathCost mission encoding bitstring
mission: name of the mission description file
encoding: encoding method for the bitstring
' 1: absolute encoding
2: relative encoding
3: relative path encoding
bitstring: bitstring for the flight path

Usage: MinPath mission
mission: name of the mission description file

Both programs read a mission file and write resulting flight paths as gnuplot command
files. Gnuplot is a public-domain plotting package available at on the web from
http://www.ucc.ie/gnuplot/. The mission description files have the following format:

Segments <#segments>
Source <x> <y>
Target <x> <y>
Exit <x> <y>

52

Fuel Load <units>

Fuel Burn Rate <units>

Afterburner Rate <units>

Threat <x> <y> <radius> <factor> <factor in afterburner>
Threat <x> <y> <radius> <factor> <factor in afterburner>

Threat <x> <y> <radius> <factor> <factor in afterburner>

The numbers in the file are not tied to specific units, but it is assumed that appropriate
combinations of units are used. For example, if distances are specified in nautical miles,
and fuel load in gallons, then fuel burn rate should be in gallons per nautical mile. It is
assumed by the model that the aircraft is either cruising (using fuel at the normal fuel
burn rate) or using afterburners (using fuel at the afterburner rate) at any given time. The
threats have different threat rates for the aircraft based on its speed.

While the MinPath program is meant to be run standalone, the PathCost program requires
an external driver to generate the candidate bitstrings. In the experiments described
below, a genetic algorithm was used as a driver. The GA is supplied on the zip archive in
binary form: ITSC_GeneticAlgorithm.exe. It is a textbook GA, which uses steady state
replacement without duplicates. The syntax for the genetic algorithm program is as
follows:

Program: ITSC GeneticAlgorithm

Options:

~b <rate> Bit mutation rate

-e <evaluations> Maximum number of unique obj fn
evaluations .

~g <generations> Number of generations to run

-h Print this message

-n <num bits> Number of bits in each chromosome

-0 <obj fn> Name of the output image

-p <size> Number of population members

-s <seed> Random number seed
Description:

ITSC_GeneticAlgorithm is a program that will run a
genetic

algorithm on a specified objective function. The
objective
function is implemented as a separate program

This can be used with the PathCost program as follows:

ITSC GeneticAlgorithm -g 100 -e 10000 -n 240 -p 400 -b 0.05
-0 "..\Source\Debug\PathCost Mission5.txt 3"

53

5.0 Sample Results

In the experiments described below, usage of afterburners was determined in a post-
processing step. Flight paths were optimized using normal fuel usage rates, and
afterburners applied later with any remaining fuel to reduce the effect of the threats.
There are five sample mission files in the zip archive in the Mission* subdirectories.
Each successive example is more complex than the preceding one. In the following
figures, threats are indicated by red circles, the flight path by red line segments, and the
source, target and exit by diamond symbols. The segments of the path where afterburners
were used are indicated by bold symbolized line segments. All the figures were generated
using Mission5 with different optimizations.

The genetic algorithm uses linear fitness normalization, and steady state replacement
without duplicates. New population members were generated using crossover (75%) and
bit mutation (25%). The results in the figures are the best result achieved using the
particular encoding, considering GA population sizes of 200, 400, 800 and 1600
members and bit mutation rates of 1, 2.5 and 5 percent. The GA converged in all cases.

Mission 5 Results: Genetic Algorithm, Absolute Encoding (Cost = 12014)

rMission 5 Results: Genetic Algorithm, Relative Encoding (Cost = 11868)

54

| Mission 5 Results: Greedy Optimization (Cost = 12005)

55

As the figures above demonstrate, the genetic algorithm with absolute and relative
encoding and the greedy algorithm all produce results of approximately the same quality.
The genetic algorithm with relative path encoding fails to produce good results. This may
be because the encoding does not easily allow good partial solutions to be combined to
make a better solution. In relative path encoding, a change to one value changes the
positions for the rest of the path because of the normalization. The genetic algorithms
required relatively large population sizes (400-800 members) in order to avoid premature
convergence to sub-optimal results.

5.15 Learning to Learn - Data Mining Applications for Wargames

John Rushing
Introduction

Wargames have a long history of use as learning tools for training of military personnel.
One important aspect of this training is the analysis of player actions during the game.
This analysis is used to reveal tendencies or potential weaknesses that the players -
themselves may not be aware of, so that they can improve their performance in future
games and more importantly in real world decision making. Modern computer wargames
are sophisticated software tools that are capable of providing detailed data about the
actions taken by each player and the underlying situations within the game scenarios that
lead up to these actions. There is a potential to use data mining tools to aid in the analysis
of this data in order to improve the feedback provided to the player. The information
derived by the data mining tools could also be used to provide information to the

56

wargame Al modules so that they can react in a way that will challenge the player in
future scenarios.

Data Mining Queries

Data mining is a discipline that draws tools and techniques from many areas, including
pattern recognition, statistics, database systems and others. The purpose of data mining is
to aid in the analysis of very large data sets. In particular, data mining can be used to
discover relationships between attributes in data sets, discover similar patterns, and
perform classification and prediction. Information provided by data mining queries can
be used for decision support. Data mining tools can be used to help characterize, model,
and predict the behavior of human players. The information provided by these tools can
then be analyzed for weaknesses or tendencies. This information can then be used to
provide feedback to the player, and also to help devise or refine Al strategies to challenge
the player in future games or scenarios. In general, data mining queries can be partitioned
into two classes: directed and undirected. In the case of a directed query, the analyst has a
particular goal in mind, or a particular question that they feel is relevant. An undirected
query on the other hand may be used to identify relationships or patterns that may be of
interest for further consideration. Undirected queries may reveal relationships that the
analyst may not have considered.

Directed Queries — Modern Air Power

In order to make the preceding discussion more concrete, it is useful to consider the
concepts of directed queries in the context of an actual wargame. Modern Air Power is a
game which has potential for use in training for the USAF. In this game, players control
aircraft, radars, SAM sites and other resources in an entire theatre of operations. Players
must make decisions about when, where, and how to deploy the resources available to
them. Some important aspects of the players’ decision making processes could be
captured by answering the questions such as these:

How does the player use SAM sites?

Under what conditions are they active?

Under what conditions are they dormant?
How does the player use tanker aircraft?

How near do they go to enemy bases?

Do they avoid enemy fighters?

Do they fly in fixed patterns?

Are they escorted, and if so how well?
When does the player willingly engage in dogfights?
How does the player select targets for ground attacks?

Do they target enemy air bases first?

Do they target enemy SAMs and AAA first?
How are multi-role fighters used?

For ground attack missions?

For air superiority missions?

57

Do they engage in attacks of opportunity? (strafing ground targets on return)
How aggressive are escort fighters?

Will they leave their charges to pursue enemy fighters?
Does the player counterattack when opportunities present themselves?

Undirected Queries — Modern Air Power

Another alternative is to frame the data mining queries in extremely general terms, with
no specific targets in mind. This is the approach that is often used in association rule
mining, where one is interested discovering relationships between attributes. In the case
of wargames, the attributes may be user actions, events, game states, or other features
computed from the game logs. The mining could be directed to discover patterns present
at a particular time, or to discover temporal patterns. For example, association rule
mining can discover rules of the form:

Whenever X1 and X2 and and Xn are true, Y1 and Y2 and ... and Ym are true also
Alternately, one might be interested in rules with time information, such as:
Whenever X1 and X2 happen followed by X3, player takes action Y

The temporal rules could involve simple sequences of events, or could also involve time
windows.

Data Mining Techniques

This section provides a brief overview of three different classes of data mining
techniques that may be useful in the context of wargames.

Clustering

Clustering involves grouping objects into classes so that similar objects are in the same
class and dissimilar objects are in different classes. Clustering is also known as
unsupervised pattern classification. Spatial clustering can be used to identify groups of
supporting units, identify front lines, and identify gaps or weak points in lines. An
example of using density based clustering for this purpose has been provided in a
separate report (ref DBSCAN report). Clustering could potentially be used at a higher
level to identify similar situations. In order to do this, a set of metrics describing the
overall situation would be required. Such a set of metrics would include things like the
relative strengths of the different sides, the locations of the objectives, the difficulty of
the terrain, and possibly many other factors.

Supervised Classification and Prediction Algorithms

A supervised pattern classifier is trained based on a set of patterns with known class
assignment. The classifier is later used to classify patterns where the class assignment is

58

unknown. Supervised pattern classifiers could be used for directed queries where a
particular decision making process is being analyzed. In order to use supervised
classifiers in this way two things are required: a set of features or attributes that contain
information from which it is possible to predict the desired event, and training data
containing instances of the event and near-miss non-instances. Feature selection
techniques can be used in conjunction with classifiers to select attributes and improve
classifier performance.

Association Rules

Association rules are capable of identifying relationships between attributes in large data
sets. They can be used for decision support, classification and clustering. Association rule
mining algorithms produce rules of the form:

(A17A2 ~...AAN)=>(B1"B2 *..."BM)

The left side of the rule is known as the antecedent and the right side is the consequent.
The rule simply states that whenever the antecedent is true, the consequent is often true as
well. There are two parameters associated with the rule: support and confidence. The
support indicates how often the rule applies (ie. the percentage of instances or
transactions in the database where the antecedent and the consequent are true). The
confidence is the probability that the consequent is true given that the antecedent is true.

Association rules could be useful in diagnosing tendencies of players. For example, the
antecedents could be game conditions and the consequents could be actions taken by the
player. If a particular rule is found that has high confidence, then that means that the
player is consistently taking the same action when the same set of circumstances prevail.
Using association rules will present challenges as it may not be simple to quantitatively
characterize game situations and actions in the distilled form that association rule
algorithms expect. '

Some specialized association rule mining algorithms may be appropriate for the analysis
of wargame data. Efficient methods for mining rules with item constraints make it
possible to use association rule methods to derive a classifier (answer a directed query).
In addition, temporal association rule mining methods may be used to discover temporal
or causal patterns .

Derivation of Attributes for Mining

Data mining analysis typically involves discovery of relationships between attributes in
large data sets. For many mining applications, particularly those related to scientific data
or image analysis, it is necessary to extract high-level attribute information from the
lower level raw data before mining. Often times determining the types of attributes
required and methods for extracting them comprise a significant portion of the mining
effort. Analysis of player behavior in a wargame will most likely require a significant
attribute extraction process.

59

In some cases, multiple levels of analysis may be required in order to satisfy the data
mining query. The results of a primitive or low-level query could be used as attributes or
inputs for higher level queries. For example, if one is interested in analyzing when
fighters are scrambled to intercept enemy aircraft, it may be necessary to first classify the
flight profiles taken by the fighters. It is possible that the fighters might have been
scrambled for some other purpose (such as fleeing). Another example is the use of multi-
role aircraft. Multi-role aircraft can be used for different types of missions, and may even
perform more than one mission simultaneously. Determining how aircraft are being used
in a particular case is important for higher level queries that analyze the behavior of
aircraft based on their roles.

Sampling and Completeness

For turn-based games, decisions are made during the player turn based on the situation at
the start of the turn or phase of interest. For such games, temporal sampling of the data is
unnecessary. For continuous time games such as Modern Air Power, it will be necessary
to sample to derive patterns for the data mining process. Sampling may be uniform
(collecting information at regular intervals) or may be based on events. Events could
include both explicit player actions and things that might trigger a player response (such
as enemy aircraft coming in range of friendly radar). The appropriate type and granularity
of sampling will depend on the types of analysis being conducted.

One important factor in deriving information is the completeness of the input. It is
important to make sure that there are many positive and negative instances of the
phenomenon of interest. For example, if one is interested in predicting when a player will
scramble fighters to intercept enemy aircraft, it is necessary to consider both the instances
where the player did scramble fighters and those where the player did not. Note that it
may not be possible to capture all of the relevant situations that factor into the player’s
decision-making process, since some such situations may not have arisen during the
scenarios in which the player has participated. This means that the rules derived may be
incomplete or overly simplistic and not reflect the full complexity underlying the player’s
decisions.

Example Query
In order to make the ideas discussed above a bit more concrete, an example query related
to the Modern Air Power game will be considered. We will attempt to formulate a data
mining query to answer the following question:

When will the player scramble fighters from a base to engage the enemy?

Attributes

The attributes available for predicting the player behavior depend on the level of
information captured in the game replay logs, and the amount of information available to

60

the player. Depending on how fog of war settings are chosen and implemented, the player
may not have exact knowledge of the situation. For example, consider the following set
of attributes that could be used: :

Number of enemy air superiority fighters within 50 miles

Number of enemy air superiority fighters within 100 miles

Number of enemy ground attack aircraft within 50 miles

Number of enemy ground attack aircraft within 100 miles

Number of enemy support aircraft (tanker, AWACS, etc.) within 50 miles
Number of enemy support aircraft (tanker, AWACS, etc.) within 100 miles
Number of friendly air superiority fighters available for intercept missions
Number of friendly air superiority fighters airborne within 50 miles
Number of friendly air superiority fighters airborne within 100 miles

Some of these attributes might have to be modified or combined. For example, the player
might know that there are incoming aircraft at a given range, but might not be able to
distinguish ground attack aircraft (like an A-10) from air superiority fighters (like an F-
15) without visual identification. The division into 50 mile increments is arbitrary, and it
may be better to use finer increments, more increments, larger range etc.

There are of course many other factors that might be considered, such as:
Quality of the aircraft
Quality of the pilots
Value of targets in the area (which may be difficult to quantify)
Course, altitude and speed of enemy aircraft

The player’s decisions may be at least partially governed by factors that are not captured
by the attributes. Furthermore, the decisions may not be entirely consistent, as the player
may make different decisions in similar situations (perhaps consciously trying to take the
enemy by surprise).

Analysis

The goal is to predict from the derived attributes when the player will scramble fighters
to engage the enemy. This is a two-class classification problem, and therefore any
classifier may be used to solve the problem, including ensemble classifiers. Using a white
box classifier such as a decision tree may be most appropriate since the models learned
by such a classifier can be directly understood and analyzed. If a black box classifier such
as a neural network is used, then feature selection methods may be useful for reducing the
number of inputs required, improving classifier accuracy, and providing information
about which attributes are most relevant to predicting the behavior of the player.

Sampling

In order to train the classifier, it is necessary to provide both positive and negative
instances of the phenomenon of interest. In this case, it is necessary to provide instances

61

where fighters were scrambled, and instances where they were not. Uniform time
sampling could be used to provide the initial data. If the number of points produced by
the uniform sample is too great, then event triggers based on enemy aircraft coming
within some distance thresholds could be used instead.

5.16 The Use of Al Technologies in Wargame Development

Drew McDowell, John Rushing and Steve Tanner

Artificial Intelligence Techniques for Wargaming

Over the past several decades, a great deal of research and development has gone into
creating new ways to simulate intelligence in computer systems. Early on, it was
assumed that it was only a matter of time before we could create machines that either
think, or could simulate thought closely enough to fool any human. This goal has clearly
not been met. However, several of the techniques being pursued have yielded tangible
and productive results, if applied properly. But how does one know how and when to
apply these techniques properly? This paper addresses this for the domain of wargaming.
Section 2 provides a general overview of a wide range of what are considered to be Al
technologies. Then, Section 3 describes how, when and why these should be applied to
wargames and training systems.

The basic reason for looking to Al technologies in war games is fairly straightforward:
They can be used to improve game efficacy and can also be used to improve the general
training experience. For example, several modeling techniques can be used to better
simulate different opponent behavior, mimicking the actions of known enemies. It can
also improve the skills and abilities of opponents, such as more efficient use of limited
resources (e.g. continuous path planning for planes). Some techniques, such as data
mining, can be used in post processing of game results to find both strengths and
weaknesses of individuals and teams, thus providing a feedback mechanism that will help
improve training effectiveness. ’

Technologies

Agents

An intelligent agent can be thought of as an independent unit of software that views its
environment through a series of sensors and acts upon it through actuators. In other
words, the agent is aware of its environment, and reacts within that environment. The
internal decision making process can range from complex to simple and they may interact
with their environment and other agents in any number of ways. This approach can give
rise to complex emergent behaviors that mimic what occurs in the field. Simple rules at
the agent level can yield complex emergent behavior for a larger group. This makes the
problems of group dynamics easier to model, but harder to prove. Agents can also act
independently, and so can be used to help modularize the code, allowing a more plug-
and-play system. Web-services are an example where different organizations provide
different services as agents, without knowing too much about one another.

62

Although agents are really a design paradigm rather than an Al ‘technology’, they are a
very powerful approach to some problems. An agent based approach allows for a more
compact, organic design, that more closely imitates the target being simulated. An agent
based system is able to model unit behavior, which is important for some modeling
situations, especially where non-determinism is required. For example, modeling unit
behavior on a battlefield may more realistically simulate real-world command structures
and communications mechanisms, especially in chaotic and rapidly dynamic situations
where troops must act in a more autonomous manner.

Blackboard Systems

Like agents, blackboard systems can be thought of as more a design paradigm rather than
a new technology. Specifically it is a way for different processes to communicate with
one another, and exchange information. The basic idea is that all processes are able to
view the same “blackboard”, an area in which they can both post and read information. If
a process needs information, it can post a request to the blackboard. If another process
can provide this information, or even a portion of the information, it responds by posting
it. In this manner, multiple processes may be involved in generating all of the
information originally requested. It is the idea that a given process will provide only
what it knows, that this information can be combined into a larger whole, and the
processes need not know about or be integrated with one another, that provide the
blackboard approach with its power.

Classification and Prediction

Classification and Prediction techniques can be used to codify how a system should
behave during known (and sometimes unexpected) events. In general Classification is
the process of describing patterns, taxonomies or attributes associated with data or
actions. For example, a Fault Tree that is used to describe the possible faults that a given

. system can exhibit is a form of classification. A given classification system can then be

used to help with prediction and planning, for example through the use of induction and
deduction based upon a given Fault Tree.

Decision Tree Induction

Decision Tree Induction algorithms create a flow chart of decision nodes that partition
data samples into classes. The most well known of which is the ID3 family of algorithms
that greedily partition sample data into classes based on the information gain of splitting
the unclassified samples on untested attributes. Decision Trees work best when a domain
expert is available to provide information for the trees and to verify the resultant data
structure. Once such a structure is created, the inductive traversal of the tree is very fast
and efficient, making them ideal techniques to use in a well defined domain when speed
an important factor. However, they tend to be brittle, meaning that they tend to break
down when faced with information outside of known paths. They do not handle
unknown situations very well. One example of their use is a Failure Modes and Effects
Analysis (FMEA) tree. Such a tree can be used to either deduce the cause of a problem,
or to induce the likely effects of a fault.

63

Bayesian Classifiers

A Bayesian classifier is a statistical classifier that calculates the probability of a sample’s
membership in a certain class. It does this via a straightforward application of Bayes’s
Theorem. This approach compares well with other classification methods and can, in
theory, have the minimum error rate among any classifier. As an example of their use,
these types of classifiers have recently become popular as junk mail filters.

Neural Networks

Modeled after biological neurons, neural networks are a collection of interconnected
independent units that classify samples by passing their attributes through a series of
weighted input and output layers. A trained network can be computationally very
efficient, but it is difficult to inspect the network state and gain any information about
what knowledge it contains. Neural Networks are appropriate for situations where
outcomes are known but difficult to model mathematically, such as non-linear systems.
Genetic Algorithms

The use of Genetic Algorithms is an approach to problem solving that is modeled after
natural evolution. A solution to a problem is encoded as a single organism which may
undergo reproduction (through cloning or crossover) and mutation. Groups of such
solutions are put into populations where they compete with one another based upon a
given fitness function. The most-fit members of the population are allowed to reproduce
and a new generation is created. Genetic Algorithms are computationally intense and it is
sometimes difficult to define an objective fitness function. However, they can be very
useful when there are no known heuristic approaches for solving the given problem, and
often develop unexpected and clever solutions.

Association Rules

Association Rule mining is a statistical process of discovering relationships between
events in a given set. This is not the same as discovering causality. It is only the
discovery that the two events are statistically linked in some manner. The rules are
generally of the form A -> B where the consequent is said to occur with the antecedent
and the whole rule has some known support and confidence level. In general this
technique offers more mathematical rigor than some of the other classification
approaches, since it relies so heavily on straightforward statistical analysis.

Clustering

Clustering techniques are often used to find patterns in data. For example, such
techniques could be used to identify patterns associated with frontlines and their weak or
strong points, thus making them useful in tactical planning.

Hierarchical Clustering

Hierarchical clustering works by grouping data points into a tree of clusters. The tree can
be constructed from the bottom up or top down, but the central theme is to group ‘nearby’
data points into sub-groups (internal tree nodes) and iteratively build a tree like structure
until the desired number of partitions is achieved.

Density Based Clustering

Density based clustering algorithms generally grow regions of the data space into
clusters, if they meet some sample density requirements. These algorithms are able to
discover arbitrarily shaped clusters by joining regions of dense samples in the data space,
and forming boundaries at low sample density regions.

Case Based Reasoning

Case Based Reasoning systems store knowledge of prototypical scenarios in an abstract
symbolic description. When a case based reasoner is used to recognize a scenario, it first
checks its stored knowledge base to determine if it has seen a case just like this before. If
such a case is found, the reasoner returns the known solution. If an identical case is not
found, the reasoner will search for cases with close similarities and propose a solution
that is a combination of the nearest known solutions. Such a system therefore tries to fit
the facts to its known set of cases. For example, such a system could model known real-
world scenarios as a set of cases. Then, when confronted with a new situation, it will
react based upon the closest match to these known scenarios.

Constraint Satisfaction

The basic idea for Constraint Satisfaction is to search through a solution domain for a set
of values-bindings that will satisfy a series of constraints. -A constraint is a simple logical
relation among several attributes of the search space that represents some partial
information that is known about the given problem. Typically, the constraints are listed
declaratively and the CSP system will bound the search space and attempt to find
bindings for the variables presented. CSP systems are an appropriate technique to use
when trying to satisfy multiple conflicting or orthogonal constraints.’

Emergent Behavior

Behavior that results from a set of very simple rules when applied to a complex
environment is said to be Emergent. All Al approaches could be said to result in
emergent behavior, but this term is usually reserved for behavior that results from actors
that explicitly do not utilize models of their environment.

Automata

In computer science, Automata refers to a very simple computational unit that senses
some input and changes to a new internal state based on simple internal rules and a
limited history. It may be helpful to visualize them as a flow chart with a finite number
of nodes. At each node, or state, the automata senses its input and moves its internal state
to the next node. It is important to note that the automata is restricted to local
information such as which state the automata is in and the states of its neighbors. It is
also important to note that groups of such simple machines are capable of highly complex
behaviors, as detailed in Stephen Wolfram’s ‘4 New Kind of Science’.

Swarm Theory

Swarm theorists assert that social interaction optimizes cognition. The swarm approach
is very similar to that of genetic algorithms, but comparison and imitation are the driving
mechanisms rather than competition and reproduction. Individuals within the swarm
compare themselves with members of their neighborhood and alter their behavior to be

65

more like their ‘best’ neighbor. The resulting self-organizing behaviors are an emergent
property that can be applied to a wide variety of search and optimization problems.

Pathing Algorithms

Pathing Algorithms can be thought of as a type of informed search. For example, what is
the shortest (least expensive) from one node on a network to another. Such algorithms
are a critical component of many route planning systems.

Djikstra’s Algorithm

Djikstra’s algorithm for shortest path graph traversal is an optimal approach for
discovering the shortest path between two points on a connected graph. The algorithm
builds a shortest-path tree from the source node to every other node in the graph until the
shortest path to the destination node is found. A side effect to this algorithm is that the
shortest paths from the source node to every other node in the graph are discovered along
the way.

A*

The A* (pronounced A-Star) algorithm is one of the classic informed search algorithms.
The algorithm progresses through a tree-like search space by tentatively moving ahead
one node and calculating the estimated distance from the new cell to the goal. This
tentative step is then put into a priority queue that is sorted by the shortest cost of the path
to the point + the estimated path cost to the goal. This is repeated until the goal node is
reached.

Planning

Markov Decisions Processes

In Markov Decision Processes sequential decisions are decided upon in terms of
projected risk vs. reward. Projected reward is based on a series of conditional
probabilities that represent what information is available to the model. A decision is then
made by applying a general policy of action that can be optimized as the model moves
through each state and gains experience.

Computing all of the possible states and rewards can be computationally intense and thus
these decision processes are often modeled as a series of Bayesian Networks called a
Dynamic Decision Network. This approach is robust enough to deal with partially
observable environments, plan revision, and unexpected observations.

Expert Systems

Expert systems are codified decision processes created by an expert who carefully studies
possible scenarios of actions and consequences and details how the system should react.
This approach yields optimal responses tailored to the information available and the
preferences of the creator. The quality of the decisions is highly dependent upon the
information contained in its knowledge base and thus can break down if presented with
unexpected situations.

66

Al In Wargames

Wargames can be extremely complex systems, with several, possibly conflicting goals.
The game must hold the interest of the player, meaning that the game must seem new or
different each time it is played. The game must be able to deal with multiple skill levels
of players, and should help a player improve over time. Furthermore, in the context of
training, the game should supply post-play analysis on how a player or team of players
performed. Toward these ends, Al technologies can play a vital role in the next
generation of war games. They can be used to create a more realistic gaming experience,
reducing or eliminating the “canned” feel of many gaming scenarios. They can adapt to a
user, creating a new feel each time the game is played. They can also monitor a player’s
progress and provide insight and suggestions on a player’s strengths and weaknesses.

In general, Al techniques can help Wargames in 3 primary areas: Added realism,
Improved performance, Post-game analysis. Note that Improved performance is not
constrained to simple speed improvements, but also includes more intelligent planning
and execution.

Software Agents

Agent technology would be useful for modeling the behavior of independent actors in
wargames. Since an agent is only privy to local information, they can be used to model
the behavior of individual war fighters or groups, allowing for a more realistic
simulation. The control logic within an agent can also be customized so that each agent
could behave differently allowing for many combinations of reactive and scripted actors
in a scenario. This would mean that the game would play differently each time, and the
outcomes would be much more non-deterministic in nature. This approach was used to
great success by MASSIVE Limited (http://www.massivesoftware.com/) when it was
called upon to simulate the large scale battle scenes in the popular ‘Lord of the Rings’
movies.

Hierarchical Agents

A series of agents could be used to model the hierarchy of a military command. In such
an agent-based chain of command, each level would be privy to more information and
command over more units as it moves up the chain. These commanding agents need not
be present as units on the field, but could operate behind the scenes. For example, such
agents would be able to view the state of a sub-section of the game board and be able to
communicate via blackboards with units directly above and below them in the chain of
command. '

These agents would be tailored to the specific jobs they perform. Agents in charge ofa
few squads could focus more on tactical decisions, whereas battalion and theater
commanding agents would be focused more on strategic planning.

Sample Strategic Agent: The Strategic agent could synthesize any information that has
been passed up from field commanders into a probability map (e.g. a Belief network) of
the state of its arena of control. Once these probabilities are assessed, the strategic agent
could form goals and optimize force deployments for offense, defense, and reserves.

67

From this knowledgebase, plans can be built for each of the Tactical agents and passed
down the chain of command, delegating the tactical decisions to these lower level agents.

Sample Tactical Agent: A tactical agent could look at the subset of a battlefield (say a
16x16 area) that it has influence over, and attempt case-based reasoning by classifying
this view as most similar to one of a few dozen prototypical cases with known response
strategies. These may have been designed by an expert to mimic the combat styles of a
specific opponent, or could be more general in nature. The agent would then carry out
the maneuvers associated with this prototype. These response maneuvers could be any
one of a set of maneuvers which are chosen based upon its standing orders handed down
from its superior agent in the chain of command.

It is also feasible that other types of agents would be developed for mid-level command
chains that facilitate communication between the strategic command agents and the field
leaders. These agents could perform other duties from logistic support, to coordination
with air/sea forces, to sub-goal planning.

It is important to remember that any agent along the chain of command could be fully
autonomous or fully scripted to add realistic, interesting, and unpredictable effects to the
overall behavior of the fighting force.

Emergent Behavior
Emergent Behavior models such as Swarming and Automata can be applied to wargames
as a means to simulate the behavior of a relatively large number of entities, such as
individual troops. Each entity would be represented by a separate, simple process. Each
of these processes would have a very limited set of rules to follow. The result would
appear to be complex emergent behavior, similar to how a real set of inidivuals would
behave. For example, the cellular automata approach to a combat force could be modeled
by giving each unit a simple rule system to react to various stimuli from the surrounding
environment such as:

If there is a higher ranked friendly unit in view, move nearer to it and accept
orders.

If there are no enemy forces visible, move towards the nearest goal.

If there are less enemy forces than friendly forces , engage the enemies.

If there are a few more enemy forces than friendly forces, dig in and take cover.

If there are many more enemy forces than friendly forces, retreat.

Simple rules such as these can yield surprisingly complex behavior (XXX I need a good
Wolfram quote). By incorporating social interaction and weighing it against individual
goals, one can model a very robust and natural feeling behavior: In this case, squads
would begin to form around leaders, weak defenses may be exploited, and front lines may
become entrenched.

Intelligent Prediction and the Use of Classifiers

If a process within a game has access to all knowledge (e.g. its fog-of-war is off) and has
a robust enough model, then it can perform substantial and accurate predictions of an

68

opponent’s behavior. Such access to knowledge is unrealistic in the real-world, but can
be used in a gaming environment to enrich the playing experience and for the training
potential it offers. There are a number of Al techniques that can be brought to bear on
such predictions.

Decision trees and Bayesian classifiers can be used in a wargame environment to quickly
decide the general state of a game and the next appropriate action. Such methods are a
good choice to implement canned and known scenarios. They offer a way to codify
strategeies and tactics, they are fast, and they are logical. These are the methods that
several chess programs use to decide next moves during the opening and end game
portions of play.

These methods do, however, generally produce consistant results. This means that a
human opponent can, over time, deduce these codified strategies and tactics and figure
out solutions to thwart them. In some cases this is exactly what should happen, and is
part of the learning experience desired. However in most cases, the game should be less
predictable. One approach to deal with this is to use multiple decision trees or classifiers
and randomly switch between them. This offers the advantages of these approaches
while working around some of their shortcomings.

Another benefit of such classifiers is that they can be updated and pretictions of outcomes
can be recomputed each turn. Therefore, it is possible for the system to be incrementally
improved over time. It can also persist between game sessions so that the most effective
approach for dealing with specific opponents can be used. In other words, such a system
can tailor itself to for each opponent it faces.

In addition, data mining techniques could extract profiles of the probability-of-action for
human player based on previous games. This information would be a significant
advantage in predicting possible game states during the prediction and policy building
stages. For example, this information could be used to bound the search space, quickly
eliminating unproductive avenues of reasoning.

| Evolutionary approach

Control sequences for units can be developed and improved through the use of
evolutionary approaches. Each type of unit could be evolved through simulated games of
the computer playing experts or other computer opponents. These games would serve as
the competition portion of the evolutionary process, continually improving the average
performance through elimination of the poor performers, rewarding the good performers,
and innovation through crossover and mutation. Multiple evaluation approaches could be
proposed: Evaluation by accumulating victory points, evaluation by human experts,
evaluation by comparison to actual data, etc...

Opponent Modeling

An expert player is observed. His game history is used to train a learning system
(decision tree, neural net, etc...) that will behave similar to this expert in subsequent
games. Note that the game history may not be from actual game play, but from historical

69

R

studies off actual engagements. If sufficient information were present, it would be
feasible to simulate the strategies of known personas in a much less brittle form than the

_ static scripting methods used presently.
Player evaluation
Many of the classification algorithms may be used to mine post-game data to determine
strengths and weaknesses of a student’s performance. This data can be stored and used in

future sessions to exploit a student’s tactical and strategic weaknesses or predict his
plans, allowing the Al to better fulfill its role as opponent and teacher.

5.17 Bibliography

The Art of Prolog, Sterling and Shapiro, MIT, 1986.

Bayesian Networks and Decision Graphs, Jensen, Springer, 2001.

Data Mining, Han and Kamber, Morgan Kaufman, 2001.

Data Mining Solutions, Westphal and Blaxton, Wiley, 1998.

‘Genetic Algorithms, Goldberg, Addison-Wesley, 1989.

Introduction to Game Theory, Morris, Springer, 1994.

Numerical Recipes in C, Press, et al, Cambridge University, 1988.
Neural Network Architectures, Dayhoff, Van Nostrand Reinhold, 1990.
Practical Optimization, Gill, Murray, and Wright, Academic Press, 1981.

Smalltalk-80, Goldberg and Robson, Addison-Wesley, 1989.

70

